unioil-loyalty-rn-app/ios/Pods/Flipper-Boost-iOSX/boost/geometry/algorithms/simplify.hpp

705 lines
22 KiB
C++

// Boost.Geometry (aka GGL, Generic Geometry Library)
// Copyright (c) 2007-2015 Barend Gehrels, Amsterdam, the Netherlands.
// Copyright (c) 2008-2015 Bruno Lalande, Paris, France.
// Copyright (c) 2009-2015 Mateusz Loskot, London, UK.
// This file was modified by Oracle on 2018-2020.
// Modifications copyright (c) 2018-2020 Oracle and/or its affiliates.
// Contributed and/or modified by Adam Wulkiewicz, on behalf of Oracle
// Parts of Boost.Geometry are redesigned from Geodan's Geographic Library
// (geolib/GGL), copyright (c) 1995-2010 Geodan, Amsterdam, the Netherlands.
// Use, modification and distribution is subject to the Boost Software License,
// Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_GEOMETRY_ALGORITHMS_SIMPLIFY_HPP
#define BOOST_GEOMETRY_ALGORITHMS_SIMPLIFY_HPP
#include <cstddef>
#include <set>
#include <boost/core/ignore_unused.hpp>
#include <boost/range/begin.hpp>
#include <boost/range/end.hpp>
#include <boost/range/size.hpp>
#include <boost/range/value_type.hpp>
#include <boost/variant/apply_visitor.hpp>
#include <boost/variant/static_visitor.hpp>
#include <boost/variant/variant_fwd.hpp>
#include <boost/geometry/core/cs.hpp>
#include <boost/geometry/core/closure.hpp>
#include <boost/geometry/core/exterior_ring.hpp>
#include <boost/geometry/core/interior_rings.hpp>
#include <boost/geometry/core/mutable_range.hpp>
#include <boost/geometry/core/tags.hpp>
#include <boost/geometry/geometries/concepts/check.hpp>
#include <boost/geometry/strategies/agnostic/simplify_douglas_peucker.hpp>
#include <boost/geometry/strategies/concepts/simplify_concept.hpp>
#include <boost/geometry/strategies/default_strategy.hpp>
#include <boost/geometry/strategies/distance.hpp>
#include <boost/geometry/algorithms/area.hpp>
#include <boost/geometry/algorithms/clear.hpp>
#include <boost/geometry/algorithms/convert.hpp>
#include <boost/geometry/algorithms/detail/equals/point_point.hpp>
#include <boost/geometry/algorithms/not_implemented.hpp>
#include <boost/geometry/algorithms/is_empty.hpp>
#include <boost/geometry/algorithms/perimeter.hpp>
#include <boost/geometry/algorithms/detail/distance/default_strategies.hpp>
namespace boost { namespace geometry
{
#ifndef DOXYGEN_NO_DETAIL
namespace detail { namespace simplify
{
template <typename Range, typename EqualsStrategy>
inline bool is_degenerate(Range const& range, EqualsStrategy const& strategy)
{
return boost::size(range) == 2
&& detail::equals::equals_point_point(geometry::range::front(range),
geometry::range::back(range),
strategy);
}
struct simplify_range_insert
{
template<typename Range, typename Strategy, typename OutputIterator, typename Distance>
static inline void apply(Range const& range, OutputIterator out,
Distance const& max_distance, Strategy const& strategy)
{
typedef typename Strategy::distance_strategy_type::equals_point_point_strategy_type
equals_strategy_type;
boost::ignore_unused(strategy);
if (is_degenerate(range, equals_strategy_type()))
{
std::copy(boost::begin(range), boost::begin(range) + 1, out);
}
else if (boost::size(range) <= 2 || max_distance < 0)
{
std::copy(boost::begin(range), boost::end(range), out);
}
else
{
strategy.apply(range, out, max_distance);
}
}
};
struct simplify_copy
{
template <typename RangeIn, typename RangeOut, typename Strategy, typename Distance>
static inline void apply(RangeIn const& range, RangeOut& out,
Distance const& , Strategy const& )
{
std::copy
(
boost::begin(range), boost::end(range),
geometry::range::back_inserter(out)
);
}
};
template <std::size_t MinimumToUseStrategy>
struct simplify_range
{
template <typename RangeIn, typename RangeOut, typename Strategy, typename Distance>
static inline void apply(RangeIn const& range, RangeOut& out,
Distance const& max_distance, Strategy const& strategy)
{
typedef typename Strategy::distance_strategy_type::equals_point_point_strategy_type
equals_strategy_type;
// For a RING:
// Note that, especially if max_distance is too large,
// the output ring might be self intersecting while the input ring is
// not, although chances are low in normal polygons
if (boost::size(range) <= MinimumToUseStrategy || max_distance < 0)
{
simplify_copy::apply(range, out, max_distance, strategy);
}
else
{
simplify_range_insert::apply
(
range, geometry::range::back_inserter(out), max_distance, strategy
);
}
// Verify the two remaining points are equal. If so, remove one of them.
// This can cause the output being under the minimum size
if (is_degenerate(out, equals_strategy_type()))
{
range::resize(out, 1);
}
}
};
struct simplify_ring
{
private :
template <typename Area>
static inline int area_sign(Area const& area)
{
return area > 0 ? 1 : area < 0 ? -1 : 0;
}
template <typename Strategy, typename Ring>
static std::size_t get_opposite(std::size_t index, Ring const& ring)
{
typename Strategy::distance_strategy_type distance_strategy;
// Verify if it is NOT the case that all points are less than the
// simplifying distance. If so, output is empty.
typename Strategy::distance_type max_distance(-1);
typename geometry::point_type<Ring>::type point = range::at(ring, index);
std::size_t i = 0;
for (typename boost::range_iterator<Ring const>::type
it = boost::begin(ring); it != boost::end(ring); ++it, ++i)
{
// This actually is point-segment distance but will result
// in point-point distance
typename Strategy::distance_type dist = distance_strategy.apply(*it, point, point);
if (dist > max_distance)
{
max_distance = dist;
index = i;
}
}
return index;
}
public :
template <typename Ring, typename Strategy, typename Distance>
static inline void apply(Ring const& ring, Ring& out,
Distance const& max_distance, Strategy const& strategy)
{
std::size_t const size = boost::size(ring);
if (size == 0)
{
return;
}
int const input_sign = area_sign(geometry::area(ring));
std::set<std::size_t> visited_indexes;
// Rotate it into a copied vector
// (vector, because source type might not support rotation)
// (duplicate end point will be simplified away)
typedef typename geometry::point_type<Ring>::type point_type;
std::vector<point_type> rotated(size);
// Closing point (but it will not start here)
std::size_t index = 0;
// Iterate (usually one iteration is enough)
for (std::size_t iteration = 0; iteration < 4u; iteration++)
{
// Always take the opposite. Opposite guarantees that no point
// "halfway" is chosen, creating an artefact (very narrow triangle)
// Iteration 0: opposite to closing point (1/2, = on convex hull)
// (this will start simplification with that point
// and its opposite ~0)
// Iteration 1: move a quarter on that ring, then opposite to 1/4
// (with its opposite 3/4)
// Iteration 2: move an eight on that ring, then opposite (1/8)
// Iteration 3: again move a quarter, then opposite (7/8)
// So finally 8 "sides" of the ring have been examined (if it were
// a semi-circle). Most probably, there are only 0 or 1 iterations.
switch (iteration)
{
case 1 : index = (index + size / 4) % size; break;
case 2 : index = (index + size / 8) % size; break;
case 3 : index = (index + size / 4) % size; break;
}
index = get_opposite<Strategy>(index, ring);
if (visited_indexes.count(index) > 0)
{
// Avoid trying the same starting point more than once
continue;
}
std::rotate_copy(boost::begin(ring), range::pos(ring, index),
boost::end(ring), rotated.begin());
// Close the rotated copy
rotated.push_back(range::at(ring, index));
simplify_range<0>::apply(rotated, out, max_distance, strategy);
// Verify that what was positive, stays positive (or goes to 0)
// and what was negative stays negative (or goes to 0)
int const output_sign = area_sign(geometry::area(out));
if (output_sign == input_sign)
{
// Result is considered as satisfactory (usually this is the
// first iteration - only for small rings, having a scale
// similar to simplify_distance, next iterations are tried
return;
}
// Original is simplified away. Possibly there is a solution
// when another starting point is used
geometry::clear(out);
if (iteration == 0
&& geometry::perimeter(ring) < 3 * max_distance)
{
// Check if it is useful to iterate. A minimal triangle has a
// perimeter of a bit more than 3 times the simplify distance
return;
}
// Prepare next try
visited_indexes.insert(index);
rotated.resize(size);
}
}
};
struct simplify_polygon
{
private:
template
<
typename IteratorIn,
typename InteriorRingsOut,
typename Distance,
typename Strategy
>
static inline void iterate(IteratorIn begin, IteratorIn end,
InteriorRingsOut& interior_rings_out,
Distance const& max_distance, Strategy const& strategy)
{
typedef typename boost::range_value<InteriorRingsOut>::type single_type;
for (IteratorIn it = begin; it != end; ++it)
{
single_type out;
simplify_ring::apply(*it, out, max_distance, strategy);
if (! geometry::is_empty(out))
{
range::push_back(interior_rings_out, out);
}
}
}
template
<
typename InteriorRingsIn,
typename InteriorRingsOut,
typename Distance,
typename Strategy
>
static inline void apply_interior_rings(
InteriorRingsIn const& interior_rings_in,
InteriorRingsOut& interior_rings_out,
Distance const& max_distance, Strategy const& strategy)
{
range::clear(interior_rings_out);
iterate(
boost::begin(interior_rings_in), boost::end(interior_rings_in),
interior_rings_out,
max_distance, strategy);
}
public:
template <typename Polygon, typename Strategy, typename Distance>
static inline void apply(Polygon const& poly_in, Polygon& poly_out,
Distance const& max_distance, Strategy const& strategy)
{
// Note that if there are inner rings, and distance is too large,
// they might intersect with the outer ring in the output,
// while it didn't in the input.
simplify_ring::apply(exterior_ring(poly_in), exterior_ring(poly_out),
max_distance, strategy);
apply_interior_rings(interior_rings(poly_in),
interior_rings(poly_out), max_distance, strategy);
}
};
template<typename Policy>
struct simplify_multi
{
template <typename MultiGeometry, typename Strategy, typename Distance>
static inline void apply(MultiGeometry const& multi, MultiGeometry& out,
Distance const& max_distance, Strategy const& strategy)
{
range::clear(out);
typedef typename boost::range_value<MultiGeometry>::type single_type;
for (typename boost::range_iterator<MultiGeometry const>::type
it = boost::begin(multi); it != boost::end(multi); ++it)
{
single_type single_out;
Policy::apply(*it, single_out, max_distance, strategy);
if (! geometry::is_empty(single_out))
{
range::push_back(out, single_out);
}
}
}
};
}} // namespace detail::simplify
#endif // DOXYGEN_NO_DETAIL
#ifndef DOXYGEN_NO_DISPATCH
namespace dispatch
{
template
<
typename Geometry,
typename Tag = typename tag<Geometry>::type
>
struct simplify: not_implemented<Tag>
{};
template <typename Point>
struct simplify<Point, point_tag>
{
template <typename Distance, typename Strategy>
static inline void apply(Point const& point, Point& out,
Distance const& , Strategy const& )
{
geometry::convert(point, out);
}
};
// Linestring, keep 2 points (unless those points are the same)
template <typename Linestring>
struct simplify<Linestring, linestring_tag>
: detail::simplify::simplify_range<2>
{};
template <typename Ring>
struct simplify<Ring, ring_tag>
: detail::simplify::simplify_ring
{};
template <typename Polygon>
struct simplify<Polygon, polygon_tag>
: detail::simplify::simplify_polygon
{};
template
<
typename Geometry,
typename Tag = typename tag<Geometry>::type
>
struct simplify_insert: not_implemented<Tag>
{};
template <typename Linestring>
struct simplify_insert<Linestring, linestring_tag>
: detail::simplify::simplify_range_insert
{};
template <typename Ring>
struct simplify_insert<Ring, ring_tag>
: detail::simplify::simplify_range_insert
{};
template <typename MultiPoint>
struct simplify<MultiPoint, multi_point_tag>
: detail::simplify::simplify_copy
{};
template <typename MultiLinestring>
struct simplify<MultiLinestring, multi_linestring_tag>
: detail::simplify::simplify_multi<detail::simplify::simplify_range<2> >
{};
template <typename MultiPolygon>
struct simplify<MultiPolygon, multi_polygon_tag>
: detail::simplify::simplify_multi<detail::simplify::simplify_polygon>
{};
} // namespace dispatch
#endif // DOXYGEN_NO_DISPATCH
namespace resolve_strategy
{
struct simplify
{
template <typename Geometry, typename Distance, typename Strategy>
static inline void apply(Geometry const& geometry,
Geometry& out,
Distance const& max_distance,
Strategy const& strategy)
{
dispatch::simplify<Geometry>::apply(geometry, out, max_distance, strategy);
}
template <typename Geometry, typename Distance>
static inline void apply(Geometry const& geometry,
Geometry& out,
Distance const& max_distance,
default_strategy)
{
typedef typename point_type<Geometry>::type point_type;
typedef typename strategy::distance::services::default_strategy
<
point_tag, segment_tag, point_type
>::type ds_strategy_type;
typedef strategy::simplify::douglas_peucker
<
point_type, ds_strategy_type
> strategy_type;
BOOST_CONCEPT_ASSERT(
(concepts::SimplifyStrategy<strategy_type, point_type>)
);
apply(geometry, out, max_distance, strategy_type());
}
};
struct simplify_insert
{
template
<
typename Geometry,
typename OutputIterator,
typename Distance,
typename Strategy
>
static inline void apply(Geometry const& geometry,
OutputIterator& out,
Distance const& max_distance,
Strategy const& strategy)
{
dispatch::simplify_insert<Geometry>::apply(geometry, out, max_distance, strategy);
}
template <typename Geometry, typename OutputIterator, typename Distance>
static inline void apply(Geometry const& geometry,
OutputIterator& out,
Distance const& max_distance,
default_strategy)
{
typedef typename point_type<Geometry>::type point_type;
typedef typename strategy::distance::services::default_strategy
<
point_tag, segment_tag, point_type
>::type ds_strategy_type;
typedef strategy::simplify::douglas_peucker
<
point_type, ds_strategy_type
> strategy_type;
BOOST_CONCEPT_ASSERT(
(concepts::SimplifyStrategy<strategy_type, point_type>)
);
apply(geometry, out, max_distance, strategy_type());
}
};
} // namespace resolve_strategy
namespace resolve_variant {
template <typename Geometry>
struct simplify
{
template <typename Distance, typename Strategy>
static inline void apply(Geometry const& geometry,
Geometry& out,
Distance const& max_distance,
Strategy const& strategy)
{
resolve_strategy::simplify::apply(geometry, out, max_distance, strategy);
}
};
template <BOOST_VARIANT_ENUM_PARAMS(typename T)>
struct simplify<boost::variant<BOOST_VARIANT_ENUM_PARAMS(T)> >
{
template <typename Distance, typename Strategy>
struct visitor: boost::static_visitor<void>
{
Distance const& m_max_distance;
Strategy const& m_strategy;
visitor(Distance const& max_distance, Strategy const& strategy)
: m_max_distance(max_distance)
, m_strategy(strategy)
{}
template <typename Geometry>
void operator()(Geometry const& geometry, Geometry& out) const
{
simplify<Geometry>::apply(geometry, out, m_max_distance, m_strategy);
}
};
template <typename Distance, typename Strategy>
static inline void
apply(boost::variant<BOOST_VARIANT_ENUM_PARAMS(T)> const& geometry,
boost::variant<BOOST_VARIANT_ENUM_PARAMS(T)>& out,
Distance const& max_distance,
Strategy const& strategy)
{
boost::apply_visitor(
visitor<Distance, Strategy>(max_distance, strategy),
geometry,
out
);
}
};
} // namespace resolve_variant
/*!
\brief Simplify a geometry using a specified strategy
\ingroup simplify
\tparam Geometry \tparam_geometry
\tparam Distance A numerical distance measure
\tparam Strategy A type fulfilling a SimplifyStrategy concept
\param strategy A strategy to calculate simplification
\param geometry input geometry, to be simplified
\param out output geometry, simplified version of the input geometry
\param max_distance distance (in units of input coordinates) of a vertex
to other segments to be removed
\param strategy simplify strategy to be used for simplification, might
include point-distance strategy
\image html svg_simplify_country.png "The image below presents the simplified country"
\qbk{distinguish,with strategy}
*/
template<typename Geometry, typename Distance, typename Strategy>
inline void simplify(Geometry const& geometry, Geometry& out,
Distance const& max_distance, Strategy const& strategy)
{
concepts::check<Geometry>();
geometry::clear(out);
resolve_variant::simplify<Geometry>::apply(geometry, out, max_distance, strategy);
}
/*!
\brief Simplify a geometry
\ingroup simplify
\tparam Geometry \tparam_geometry
\tparam Distance \tparam_numeric
\note This version of simplify simplifies a geometry using the default
strategy (Douglas Peucker),
\param geometry input geometry, to be simplified
\param out output geometry, simplified version of the input geometry
\param max_distance distance (in units of input coordinates) of a vertex
to other segments to be removed
\qbk{[include reference/algorithms/simplify.qbk]}
*/
template<typename Geometry, typename Distance>
inline void simplify(Geometry const& geometry, Geometry& out,
Distance const& max_distance)
{
concepts::check<Geometry>();
geometry::simplify(geometry, out, max_distance, default_strategy());
}
#ifndef DOXYGEN_NO_DETAIL
namespace detail { namespace simplify
{
/*!
\brief Simplify a geometry, using an output iterator
and a specified strategy
\ingroup simplify
\tparam Geometry \tparam_geometry
\param geometry input geometry, to be simplified
\param out output iterator, outputs all simplified points
\param max_distance distance (in units of input coordinates) of a vertex
to other segments to be removed
\param strategy simplify strategy to be used for simplification,
might include point-distance strategy
\qbk{distinguish,with strategy}
\qbk{[include reference/algorithms/simplify.qbk]}
*/
template<typename Geometry, typename OutputIterator, typename Distance, typename Strategy>
inline void simplify_insert(Geometry const& geometry, OutputIterator out,
Distance const& max_distance, Strategy const& strategy)
{
concepts::check<Geometry const>();
resolve_strategy::simplify_insert::apply(geometry, out, max_distance, strategy);
}
/*!
\brief Simplify a geometry, using an output iterator
\ingroup simplify
\tparam Geometry \tparam_geometry
\param geometry input geometry, to be simplified
\param out output iterator, outputs all simplified points
\param max_distance distance (in units of input coordinates) of a vertex
to other segments to be removed
\qbk{[include reference/algorithms/simplify_insert.qbk]}
*/
template<typename Geometry, typename OutputIterator, typename Distance>
inline void simplify_insert(Geometry const& geometry, OutputIterator out,
Distance const& max_distance)
{
// Concept: output point type = point type of input geometry
concepts::check<Geometry const>();
concepts::check<typename point_type<Geometry>::type>();
simplify_insert(geometry, out, max_distance, default_strategy());
}
}} // namespace detail::simplify
#endif // DOXYGEN_NO_DETAIL
}} // namespace boost::geometry
#endif // BOOST_GEOMETRY_ALGORITHMS_SIMPLIFY_HPP