unioil-loyalty-rn-app/ios/Pods/Flipper-Boost-iOSX/boost/math/differentiation/autodiff_cpp11.hpp

387 lines
17 KiB
C++

// Copyright Matthew Pulver 2018 - 2019.
// Distributed under the Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt or copy at
// https://www.boost.org/LICENSE_1_0.txt)
// Contributors:
// * Kedar R. Bhat - C++11 compatibility.
// Notes:
// * Any changes to this file should always be downstream from autodiff.cpp.
// C++17 is a higher-level language and is easier to maintain. For example, a number of functions which are
// lucidly read in autodiff.cpp are forced to be split into multiple structs/functions in this file for
// C++11.
// * Use of typename RootType and SizeType is a hack to prevent Visual Studio 2015 from compiling functions
// that are never called, that would otherwise produce compiler errors. Also forces functions to be inline.
#ifndef BOOST_MATH_DIFFERENTIATION_AUTODIFF_HPP
#error \
"Do not #include this file directly. This should only be #included by autodiff.hpp for C++11 compatibility."
#endif
#include <type_traits>
#include <boost/math/tools/mp.hpp>
namespace mp = boost::math::tools::meta_programming;
namespace boost {
namespace math {
namespace differentiation {
inline namespace autodiff_v1 {
namespace detail {
template <typename RealType, size_t Order>
fvar<RealType, Order>::fvar(root_type const& ca, bool const is_variable) {
fvar_cpp11(is_fvar<RealType>{}, ca, is_variable);
}
template <typename RealType, size_t Order>
template <typename RootType>
void fvar<RealType, Order>::fvar_cpp11(std::true_type, RootType const& ca, bool const is_variable) {
v.front() = RealType(ca, is_variable);
if (0 < Order)
std::fill(v.begin() + 1, v.end(), static_cast<RealType>(0));
}
template <typename RealType, size_t Order>
template <typename RootType>
void fvar<RealType, Order>::fvar_cpp11(std::false_type, RootType const& ca, bool const is_variable) {
v.front() = ca;
if (0 < Order) {
v[1] = static_cast<root_type>(static_cast<int>(is_variable));
if (1 < Order)
std::fill(v.begin() + 2, v.end(), static_cast<RealType>(0));
}
}
template <typename RealType, size_t Order>
template <typename... Orders>
get_type_at<RealType, sizeof...(Orders)> fvar<RealType, Order>::at_cpp11(std::true_type,
size_t order,
Orders...) const {
return v.at(order);
}
template <typename RealType, size_t Order>
template <typename... Orders>
get_type_at<RealType, sizeof...(Orders)> fvar<RealType, Order>::at_cpp11(std::false_type,
size_t order,
Orders... orders) const {
return v.at(order).at(orders...);
}
// Can throw "std::out_of_range: array::at: __n (which is 7) >= _Nm (which is 7)"
template <typename RealType, size_t Order>
template <typename... Orders>
get_type_at<RealType, sizeof...(Orders)> fvar<RealType, Order>::at(size_t order, Orders... orders) const {
return at_cpp11(std::integral_constant<bool, sizeof...(orders) == 0>{}, order, orders...);
}
template <typename T, typename... Ts>
constexpr T product(Ts...) {
return static_cast<T>(1);
}
template <typename T, typename... Ts>
constexpr T product(T factor, Ts... factors) {
return factor * product<T>(factors...);
}
// Can throw "std::out_of_range: array::at: __n (which is 7) >= _Nm (which is 7)"
template <typename RealType, size_t Order>
template <typename... Orders>
get_type_at<fvar<RealType, Order>, sizeof...(Orders)> fvar<RealType, Order>::derivative(
Orders... orders) const {
static_assert(sizeof...(Orders) <= depth,
"Number of parameters to derivative(...) cannot exceed fvar::depth.");
return at(static_cast<size_t>(orders)...) *
product(boost::math::factorial<root_type>(static_cast<unsigned>(orders))...);
}
template <typename RootType, typename Func>
class Curry {
Func const& f_;
size_t const i_;
public:
template <typename SizeType> // typename SizeType to force inline constructor.
Curry(Func const& f, SizeType i) : f_(f), i_(static_cast<std::size_t>(i)) {}
template <typename... Indices>
RootType operator()(Indices... indices) const {
using unsigned_t = typename std::make_unsigned<typename std::common_type<Indices>::type...>::type;
return f_(i_, static_cast<unsigned_t>(indices)...);
}
};
template <typename RealType, size_t Order>
template <typename Func, typename Fvar, typename... Fvars>
promote<fvar<RealType, Order>, Fvar, Fvars...> fvar<RealType, Order>::apply_coefficients(
size_t const order,
Func const& f,
Fvar const& cr,
Fvars&&... fvars) const {
fvar<RealType, Order> const epsilon = fvar<RealType, Order>(*this).set_root(0);
size_t i = order < order_sum ? order : order_sum;
using return_type = promote<fvar<RealType, Order>, Fvar, Fvars...>;
return_type accumulator = cr.apply_coefficients(
order - i, Curry<typename return_type::root_type, Func>(f, i), std::forward<Fvars>(fvars)...);
while (i--)
(accumulator *= epsilon) += cr.apply_coefficients(
order - i, Curry<typename return_type::root_type, Func>(f, i), std::forward<Fvars>(fvars)...);
return accumulator;
}
template <typename RealType, size_t Order>
template <typename Func, typename Fvar, typename... Fvars>
promote<fvar<RealType, Order>, Fvar, Fvars...> fvar<RealType, Order>::apply_coefficients_nonhorner(
size_t const order,
Func const& f,
Fvar const& cr,
Fvars&&... fvars) const {
fvar<RealType, Order> const epsilon = fvar<RealType, Order>(*this).set_root(0);
fvar<RealType, Order> epsilon_i = fvar<RealType, Order>(1); // epsilon to the power of i
using return_type = promote<fvar<RealType, Order>, Fvar, Fvars...>;
return_type accumulator = cr.apply_coefficients_nonhorner(
order, Curry<typename return_type::root_type, Func>(f, 0), std::forward<Fvars>(fvars)...);
size_t const i_max = order < order_sum ? order : order_sum;
for (size_t i = 1; i <= i_max; ++i) {
epsilon_i = epsilon_i.epsilon_multiply(i - 1, 0, epsilon, 1, 0);
accumulator += epsilon_i.epsilon_multiply(
i,
0,
cr.apply_coefficients_nonhorner(
order - i, Curry<typename return_type::root_type, Func>(f, i), std::forward<Fvars>(fvars)...),
0,
0);
}
return accumulator;
}
template <typename RealType, size_t Order>
template <typename Func, typename Fvar, typename... Fvars>
promote<fvar<RealType, Order>, Fvar, Fvars...> fvar<RealType, Order>::apply_derivatives(
size_t const order,
Func const& f,
Fvar const& cr,
Fvars&&... fvars) const {
fvar<RealType, Order> const epsilon = fvar<RealType, Order>(*this).set_root(0);
size_t i = order < order_sum ? order : order_sum;
using return_type = promote<fvar<RealType, Order>, Fvar, Fvars...>;
return_type accumulator =
cr.apply_derivatives(
order - i, Curry<typename return_type::root_type, Func>(f, i), std::forward<Fvars>(fvars)...) /
factorial<root_type>(static_cast<unsigned>(i));
while (i--)
(accumulator *= epsilon) +=
cr.apply_derivatives(
order - i, Curry<typename return_type::root_type, Func>(f, i), std::forward<Fvars>(fvars)...) /
factorial<root_type>(static_cast<unsigned>(i));
return accumulator;
}
template <typename RealType, size_t Order>
template <typename Func, typename Fvar, typename... Fvars>
promote<fvar<RealType, Order>, Fvar, Fvars...> fvar<RealType, Order>::apply_derivatives_nonhorner(
size_t const order,
Func const& f,
Fvar const& cr,
Fvars&&... fvars) const {
fvar<RealType, Order> const epsilon = fvar<RealType, Order>(*this).set_root(0);
fvar<RealType, Order> epsilon_i = fvar<RealType, Order>(1); // epsilon to the power of i
using return_type = promote<fvar<RealType, Order>, Fvar, Fvars...>;
return_type accumulator = cr.apply_derivatives_nonhorner(
order, Curry<typename return_type::root_type, Func>(f, 0), std::forward<Fvars>(fvars)...);
size_t const i_max = order < order_sum ? order : order_sum;
for (size_t i = 1; i <= i_max; ++i) {
epsilon_i = epsilon_i.epsilon_multiply(i - 1, 0, epsilon, 1, 0);
accumulator += epsilon_i.epsilon_multiply(
i,
0,
cr.apply_derivatives_nonhorner(
order - i, Curry<typename return_type::root_type, Func>(f, i), std::forward<Fvars>(fvars)...) /
factorial<root_type>(static_cast<unsigned>(i)),
0,
0);
}
return accumulator;
}
template <typename RealType, size_t Order>
template <typename SizeType>
fvar<RealType, Order> fvar<RealType, Order>::epsilon_multiply_cpp11(std::true_type,
SizeType z0,
size_t isum0,
fvar<RealType, Order> const& cr,
size_t z1,
size_t isum1) const {
size_t const m0 = order_sum + isum0 < Order + z0 ? Order + z0 - (order_sum + isum0) : 0;
size_t const m1 = order_sum + isum1 < Order + z1 ? Order + z1 - (order_sum + isum1) : 0;
size_t const i_max = m0 + m1 < Order ? Order - (m0 + m1) : 0;
fvar<RealType, Order> retval = fvar<RealType, Order>();
for (size_t i = 0, j = Order; i <= i_max; ++i, --j)
retval.v[j] = epsilon_inner_product(z0, isum0, m0, cr, z1, isum1, m1, j);
return retval;
}
template <typename RealType, size_t Order>
template <typename SizeType>
fvar<RealType, Order> fvar<RealType, Order>::epsilon_multiply_cpp11(std::false_type,
SizeType z0,
size_t isum0,
fvar<RealType, Order> const& cr,
size_t z1,
size_t isum1) const {
using ssize_t = typename std::make_signed<std::size_t>::type;
RealType const zero(0);
size_t const m0 = order_sum + isum0 < Order + z0 ? Order + z0 - (order_sum + isum0) : 0;
size_t const m1 = order_sum + isum1 < Order + z1 ? Order + z1 - (order_sum + isum1) : 0;
size_t const i_max = m0 + m1 < Order ? Order - (m0 + m1) : 0;
fvar<RealType, Order> retval = fvar<RealType, Order>();
for (size_t i = 0, j = Order; i <= i_max; ++i, --j)
retval.v[j] = std::inner_product(
v.cbegin() + ssize_t(m0), v.cend() - ssize_t(i + m1), cr.v.crbegin() + ssize_t(i + m0), zero);
return retval;
}
template <typename RealType, size_t Order>
fvar<RealType, Order> fvar<RealType, Order>::epsilon_multiply(size_t z0,
size_t isum0,
fvar<RealType, Order> const& cr,
size_t z1,
size_t isum1) const {
return epsilon_multiply_cpp11(is_fvar<RealType>{}, z0, isum0, cr, z1, isum1);
}
template <typename RealType, size_t Order>
template <typename SizeType>
fvar<RealType, Order> fvar<RealType, Order>::epsilon_multiply_cpp11(std::true_type,
SizeType z0,
size_t isum0,
root_type const& ca) const {
fvar<RealType, Order> retval(*this);
size_t const m0 = order_sum + isum0 < Order + z0 ? Order + z0 - (order_sum + isum0) : 0;
for (size_t i = m0; i <= Order; ++i)
retval.v[i] = retval.v[i].epsilon_multiply(z0, isum0 + i, ca);
return retval;
}
template <typename RealType, size_t Order>
template <typename SizeType>
fvar<RealType, Order> fvar<RealType, Order>::epsilon_multiply_cpp11(std::false_type,
SizeType z0,
size_t isum0,
root_type const& ca) const {
fvar<RealType, Order> retval(*this);
size_t const m0 = order_sum + isum0 < Order + z0 ? Order + z0 - (order_sum + isum0) : 0;
for (size_t i = m0; i <= Order; ++i)
if (retval.v[i] != static_cast<RealType>(0))
retval.v[i] *= ca;
return retval;
}
template <typename RealType, size_t Order>
fvar<RealType, Order> fvar<RealType, Order>::epsilon_multiply(size_t z0,
size_t isum0,
root_type const& ca) const {
return epsilon_multiply_cpp11(is_fvar<RealType>{}, z0, isum0, ca);
}
template <typename RealType, size_t Order>
template <typename RootType>
fvar<RealType, Order>& fvar<RealType, Order>::multiply_assign_by_root_type_cpp11(std::true_type,
bool is_root,
RootType const& ca) {
auto itr = v.begin();
itr->multiply_assign_by_root_type(is_root, ca);
for (++itr; itr != v.end(); ++itr)
itr->multiply_assign_by_root_type(false, ca);
return *this;
}
template <typename RealType, size_t Order>
template <typename RootType>
fvar<RealType, Order>& fvar<RealType, Order>::multiply_assign_by_root_type_cpp11(std::false_type,
bool is_root,
RootType const& ca) {
auto itr = v.begin();
if (is_root || *itr != 0)
*itr *= ca; // Skip multiplication of 0 by ca=inf to avoid nan, except when is_root.
for (++itr; itr != v.end(); ++itr)
if (*itr != 0)
*itr *= ca;
return *this;
}
template <typename RealType, size_t Order>
fvar<RealType, Order>& fvar<RealType, Order>::multiply_assign_by_root_type(bool is_root,
root_type const& ca) {
return multiply_assign_by_root_type_cpp11(is_fvar<RealType>{}, is_root, ca);
}
template <typename RealType, size_t Order>
template <typename RootType>
fvar<RealType, Order>& fvar<RealType, Order>::negate_cpp11(std::true_type, RootType const&) {
std::for_each(v.begin(), v.end(), [](RealType& r) { r.negate(); });
return *this;
}
template <typename RealType, size_t Order>
template <typename RootType>
fvar<RealType, Order>& fvar<RealType, Order>::negate_cpp11(std::false_type, RootType const&) {
std::for_each(v.begin(), v.end(), [](RealType& a) { a = -a; });
return *this;
}
template <typename RealType, size_t Order>
fvar<RealType, Order>& fvar<RealType, Order>::negate() {
return negate_cpp11(is_fvar<RealType>{}, static_cast<root_type>(*this));
}
template <typename RealType, size_t Order>
template <typename RootType>
fvar<RealType, Order>& fvar<RealType, Order>::set_root_cpp11(std::true_type, RootType const& root) {
v.front().set_root(root);
return *this;
}
template <typename RealType, size_t Order>
template <typename RootType>
fvar<RealType, Order>& fvar<RealType, Order>::set_root_cpp11(std::false_type, RootType const& root) {
v.front() = root;
return *this;
}
template <typename RealType, size_t Order>
fvar<RealType, Order>& fvar<RealType, Order>::set_root(root_type const& root) {
return set_root_cpp11(is_fvar<RealType>{}, root);
}
template <typename RealType, size_t Order, size_t... Is>
auto make_fvar_for_tuple(mp::index_sequence<Is...>, RealType const& ca)
-> decltype(make_fvar<RealType, zero<Is>::value..., Order>(ca)) {
return make_fvar<RealType, zero<Is>::value..., Order>(ca);
}
template <typename RealType, size_t... Orders, size_t... Is, typename... RealTypes>
auto make_ftuple_impl(mp::index_sequence<Is...>, RealTypes const&... ca)
-> decltype(std::make_tuple(make_fvar_for_tuple<RealType, Orders>(mp::make_index_sequence<Is>{},
ca)...)) {
return std::make_tuple(make_fvar_for_tuple<RealType, Orders>(mp::make_index_sequence<Is>{}, ca)...);
}
} // namespace detail
template <typename RealType, size_t... Orders, typename... RealTypes>
auto make_ftuple(RealTypes const&... ca)
-> decltype(detail::make_ftuple_impl<RealType, Orders...>(mp::index_sequence_for<RealTypes...>{},
ca...)) {
static_assert(sizeof...(Orders) == sizeof...(RealTypes),
"Number of Orders must match number of function parameters.");
return detail::make_ftuple_impl<RealType, Orders...>(mp::index_sequence_for<RealTypes...>{}, ca...);
}
} // namespace autodiff_v1
} // namespace differentiation
} // namespace math
} // namespace boost