unioil-loyalty-rn-app/ios/Pods/Flipper-Boost-iOSX/boost/math/special_functions/chebyshev.hpp

290 lines
8.1 KiB
C++
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// (C) Copyright Nick Thompson 2017.
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_MATH_SPECIAL_CHEBYSHEV_HPP
#define BOOST_MATH_SPECIAL_CHEBYSHEV_HPP
#include <cmath>
#include <boost/math/special_functions/math_fwd.hpp>
#include <boost/math/policies/error_handling.hpp>
#include <boost/math/constants/constants.hpp>
#include <boost/math/tools/promotion.hpp>
#if (__cplusplus > 201103) || (defined(_CPPLIB_VER) && (_CPPLIB_VER >= 610))
# define BOOST_MATH_CHEB_USE_STD_ACOSH
#endif
#ifndef BOOST_MATH_CHEB_USE_STD_ACOSH
# include <boost/math/special_functions/acosh.hpp>
#endif
namespace boost { namespace math {
template<class T1, class T2, class T3>
inline typename tools::promote_args<T1, T2, T3>::type chebyshev_next(T1 const & x, T2 const & Tn, T3 const & Tn_1)
{
return 2*x*Tn - Tn_1;
}
namespace detail {
template<class Real, bool second, class Policy>
inline Real chebyshev_imp(unsigned n, Real const & x, const Policy&)
{
#ifdef BOOST_MATH_CHEB_USE_STD_ACOSH
using std::acosh;
#define BOOST_MATH_ACOSH_POLICY
#else
using boost::math::acosh;
#define BOOST_MATH_ACOSH_POLICY , Policy()
#endif
using std::cosh;
using std::pow;
using std::sqrt;
Real T0 = 1;
Real T1;
if (second)
{
if (x > 1 || x < -1)
{
Real t = sqrt(x*x -1);
return static_cast<Real>((pow(x+t, (int)(n+1)) - pow(x-t, (int)(n+1)))/(2*t));
}
T1 = 2*x;
}
else
{
if (x > 1)
{
return cosh(n*acosh(x BOOST_MATH_ACOSH_POLICY));
}
if (x < -1)
{
if (n & 1)
{
return -cosh(n*acosh(-x BOOST_MATH_ACOSH_POLICY));
}
else
{
return cosh(n*acosh(-x BOOST_MATH_ACOSH_POLICY));
}
}
T1 = x;
}
if (n == 0)
{
return T0;
}
unsigned l = 1;
while(l < n)
{
std::swap(T0, T1);
T1 = boost::math::chebyshev_next(x, T0, T1);
++l;
}
return T1;
}
} // namespace detail
template <class Real, class Policy>
inline typename tools::promote_args<Real>::type
chebyshev_t(unsigned n, Real const & x, const Policy&)
{
typedef typename tools::promote_args<Real>::type result_type;
typedef typename policies::evaluation<result_type, Policy>::type value_type;
typedef typename policies::normalise<
Policy,
policies::promote_float<false>,
policies::promote_double<false>,
policies::discrete_quantile<>,
policies::assert_undefined<> >::type forwarding_policy;
return policies::checked_narrowing_cast<result_type, Policy>(detail::chebyshev_imp<value_type, false>(n, static_cast<value_type>(x), forwarding_policy()), "boost::math::chebyshev_t<%1%>(unsigned, %1%)");
}
template<class Real>
inline typename tools::promote_args<Real>::type chebyshev_t(unsigned n, Real const & x)
{
return chebyshev_t(n, x, policies::policy<>());
}
template <class Real, class Policy>
inline typename tools::promote_args<Real>::type
chebyshev_u(unsigned n, Real const & x, const Policy&)
{
typedef typename tools::promote_args<Real>::type result_type;
typedef typename policies::evaluation<result_type, Policy>::type value_type;
typedef typename policies::normalise<
Policy,
policies::promote_float<false>,
policies::promote_double<false>,
policies::discrete_quantile<>,
policies::assert_undefined<> >::type forwarding_policy;
return policies::checked_narrowing_cast<result_type, Policy>(detail::chebyshev_imp<value_type, true>(n, static_cast<value_type>(x), forwarding_policy()), "boost::math::chebyshev_u<%1%>(unsigned, %1%)");
}
template<class Real>
inline typename tools::promote_args<Real>::type chebyshev_u(unsigned n, Real const & x)
{
return chebyshev_u(n, x, policies::policy<>());
}
template <class Real, class Policy>
inline typename tools::promote_args<Real>::type
chebyshev_t_prime(unsigned n, Real const & x, const Policy&)
{
typedef typename tools::promote_args<Real>::type result_type;
typedef typename policies::evaluation<result_type, Policy>::type value_type;
typedef typename policies::normalise<
Policy,
policies::promote_float<false>,
policies::promote_double<false>,
policies::discrete_quantile<>,
policies::assert_undefined<> >::type forwarding_policy;
if (n == 0)
{
return result_type(0);
}
return policies::checked_narrowing_cast<result_type, Policy>(n * detail::chebyshev_imp<value_type, true>(n - 1, static_cast<value_type>(x), forwarding_policy()), "boost::math::chebyshev_t_prime<%1%>(unsigned, %1%)");
}
template<class Real>
inline typename tools::promote_args<Real>::type chebyshev_t_prime(unsigned n, Real const & x)
{
return chebyshev_t_prime(n, x, policies::policy<>());
}
/*
* This is Algorithm 3.1 of
* Gil, Amparo, Javier Segura, and Nico M. Temme.
* Numerical methods for special functions.
* Society for Industrial and Applied Mathematics, 2007.
* https://www.siam.org/books/ot99/OT99SampleChapter.pdf
* However, our definition of c0 differs by a factor of 1/2, as stated in the docs. . .
*/
template<class Real, class T2>
inline Real chebyshev_clenshaw_recurrence(const Real* const c, size_t length, const T2& x)
{
using boost::math::constants::half;
if (length < 2)
{
if (length == 0)
{
return 0;
}
return c[0]/2;
}
Real b2 = 0;
Real b1 = c[length -1];
for(size_t j = length - 2; j >= 1; --j)
{
Real tmp = 2*x*b1 - b2 + c[j];
b2 = b1;
b1 = tmp;
}
return x*b1 - b2 + half<Real>()*c[0];
}
namespace detail {
template<class Real>
inline Real unchecked_chebyshev_clenshaw_recurrence(const Real* const c, size_t length, const Real & a, const Real & b, const Real& x)
{
Real t;
Real u;
// This cutoff is not super well defined, but it's a good estimate.
// See "An Error Analysis of the Modified Clenshaw Method for Evaluating Chebyshev and Fourier Series"
// J. OLIVER, IMA Journal of Applied Mathematics, Volume 20, Issue 3, November 1977, Pages 379391
// https://doi.org/10.1093/imamat/20.3.379
const Real cutoff = 0.6;
if (x - a < b - x)
{
u = 2*(x-a)/(b-a);
t = u - 1;
if (t > -cutoff)
{
Real b2 = 0;
Real b1 = c[length -1];
for(size_t j = length - 2; j >= 1; --j)
{
Real tmp = 2*t*b1 - b2 + c[j];
b2 = b1;
b1 = tmp;
}
return t*b1 - b2 + c[0]/2;
}
else
{
Real b = c[length -1];
Real d = b;
Real b2 = 0;
for (size_t r = length - 2; r >= 1; --r)
{
d = 2*u*b - d + c[r];
b2 = b;
b = d - b;
}
return t*b - b2 + c[0]/2;
}
}
else
{
u = -2*(b-x)/(b-a);
t = u + 1;
if (t < cutoff)
{
Real b2 = 0;
Real b1 = c[length -1];
for(size_t j = length - 2; j >= 1; --j)
{
Real tmp = 2*t*b1 - b2 + c[j];
b2 = b1;
b1 = tmp;
}
return t*b1 - b2 + c[0]/2;
}
else
{
Real b = c[length -1];
Real d = b;
Real b2 = 0;
for (size_t r = length - 2; r >= 1; --r)
{
d = 2*u*b + d + c[r];
b2 = b;
b = d + b;
}
return t*b - b2 + c[0]/2;
}
}
}
} // namespace detail
template<class Real>
inline Real chebyshev_clenshaw_recurrence(const Real* const c, size_t length, const Real & a, const Real & b, const Real& x)
{
if (x < a || x > b)
{
throw std::domain_error("x in [a, b] is required.");
}
if (length < 2)
{
if (length == 0)
{
return 0;
}
return c[0]/2;
}
return detail::unchecked_chebyshev_clenshaw_recurrence(c, length, a, b, x);
}
}}
#endif