unioil-loyalty-rn-app/ios/Pods/Flipper-Boost-iOSX/boost/math/special_functions/jacobi_theta.hpp

836 lines
33 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// Jacobi theta functions
// Copyright Evan Miller 2020
//
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
// Four main theta functions with various flavors of parameterization,
// floating-point policies, and bonus "minus 1" versions of functions 3 and 4
// designed to preserve accuracy for small q. Twenty-four C++ functions are
// provided in all.
//
// The functions take a real argument z and a parameter known as q, or its close
// relative tau.
//
// The mathematical functions are best understood in terms of their Fourier
// series. Using the q parameterization, and summing from n = 0 to ∞:
//
// θ₁(z,q) = 2 Σ (-1)ⁿ * q^(n+1/2)² * sin((2n+1)z)
// θ₂(z,q) = 2 Σ q^(n+1/2)² * cos((2n+1)z)
// θ₃(z,q) = 1 + 2 Σ q^n² * cos(2nz)
// θ₄(z,q) = 1 + 2 Σ (-1)ⁿ * q^n² * cos(2nz)
//
// Appropriately multiplied and divided, these four theta functions can be used
// to implement the famous Jacabi elliptic functions - but this is not really
// recommended, as the existing Boost implementations are likely faster and
// more accurate. More saliently, setting z = 0 on the fourth theta function
// will produce the limiting CDF of the Kolmogorov-Smirnov distribution, which
// is this particular implementations raison d'être.
//
// Separate C++ functions are provided for q and for tau. The main q functions are:
//
// template <class T> inline T jacobi_theta1(T z, T q);
// template <class T> inline T jacobi_theta2(T z, T q);
// template <class T> inline T jacobi_theta3(T z, T q);
// template <class T> inline T jacobi_theta4(T z, T q);
//
// The parameter q, also known as the nome, is restricted to the domain (0, 1),
// and will throw a domain error otherwise.
//
// The equivalent functions that use tau instead of q are:
//
// template <class T> inline T jacobi_theta1tau(T z, T tau);
// template <class T> inline T jacobi_theta2tau(T z, T tau);
// template <class T> inline T jacobi_theta3tau(T z, T tau);
// template <class T> inline T jacobi_theta4tau(T z, T tau);
//
// Mathematically, q and τ are related by:
//
// q = exp(iπτ)
//
// However, the τ in the equation above is *not* identical to the tau in the function
// signature. Instead, `tau` is the imaginary component of τ. Mathematically, τ can
// be complex - but practically, most applications call for a purely imaginary τ.
// Rather than provide a full complex-number API, the author decided to treat the
// parameter `tau` as an imaginary number. So in computational terms, the
// relationship between `q` and `tau` is given by:
//
// q = exp(-constants::pi<T>() * tau)
//
// The tau versions are provided for the sake of accuracy, as well as conformance
// with common notation. If your q is an exponential, you are better off using
// the tau versions, e.g.
//
// jacobi_theta1(z, exp(-a)); // rather poor accuracy
// jacobi_theta1tau(z, a / constants::pi<T>()); // better accuracy
//
// Similarly, if you have a precise (small positive) value for the complement
// of q, you can obtain a more precise answer overall by passing the result of
// `log1p` to the tau parameter:
//
// jacobi_theta1(z, 1-q_complement); // precision lost in subtraction
// jacobi_theta1tau(z, -log1p(-q_complement) / constants::pi<T>()); // better!
//
// A third quartet of functions are provided for improving accuracy in cases
// where q is small, specifically |q| < exp(-π) ≅ 0.04 (or, equivalently, tau
// greater than unity). In this domain of q values, the third and fourth theta
// functions always return values close to 1. So the following "m1" functions
// are provided, similar in spirit to `expm1`, which return one less than their
// regular counterparts:
//
// template <class T> inline T jacobi_theta3m1(T z, T q);
// template <class T> inline T jacobi_theta4m1(T z, T q);
// template <class T> inline T jacobi_theta3m1tau(T z, T tau);
// template <class T> inline T jacobi_theta4m1tau(T z, T tau);
//
// Note that "m1" versions of the first and second theta would not be useful,
// as their ranges are not confined to a neighborhood around 1 (see the Fourier
// transform representations above).
//
// Finally, the twelve functions above are each available with a third Policy
// argument, which can be used to define a custom epsilon value. These Policy
// versions bring the total number of functions provided by jacobi_theta.hpp
// to twenty-four.
//
// See:
// https://mathworld.wolfram.com/JacobiThetaFunctions.html
// https://dlmf.nist.gov/20
#ifndef BOOST_MATH_JACOBI_THETA_HPP
#define BOOST_MATH_JACOBI_THETA_HPP
#include <boost/math/tools/complex.hpp>
#include <boost/math/tools/precision.hpp>
#include <boost/math/tools/promotion.hpp>
#include <boost/math/policies/error_handling.hpp>
#include <boost/math/constants/constants.hpp>
namespace boost{ namespace math{
// Simple functions - parameterized by q
template <class T, class U>
inline typename tools::promote_args<T, U>::type jacobi_theta1(T z, U q);
template <class T, class U>
inline typename tools::promote_args<T, U>::type jacobi_theta2(T z, U q);
template <class T, class U>
inline typename tools::promote_args<T, U>::type jacobi_theta3(T z, U q);
template <class T, class U>
inline typename tools::promote_args<T, U>::type jacobi_theta4(T z, U q);
// Simple functions - parameterized by tau (assumed imaginary)
// q = exp(iπτ)
// tau = -log(q)/π
template <class T, class U>
inline typename tools::promote_args<T, U>::type jacobi_theta1tau(T z, U tau);
template <class T, class U>
inline typename tools::promote_args<T, U>::type jacobi_theta2tau(T z, U tau);
template <class T, class U>
inline typename tools::promote_args<T, U>::type jacobi_theta3tau(T z, U tau);
template <class T, class U>
inline typename tools::promote_args<T, U>::type jacobi_theta4tau(T z, U tau);
// Minus one versions for small q / large tau
template <class T, class U>
inline typename tools::promote_args<T, U>::type jacobi_theta3m1(T z, U q);
template <class T, class U>
inline typename tools::promote_args<T, U>::type jacobi_theta4m1(T z, U q);
template <class T, class U>
inline typename tools::promote_args<T, U>::type jacobi_theta3m1tau(T z, U tau);
template <class T, class U>
inline typename tools::promote_args<T, U>::type jacobi_theta4m1tau(T z, U tau);
// Policied versions - parameterized by q
template <class T, class U, class Policy>
inline typename tools::promote_args<T, U>::type jacobi_theta1(T z, U q, const Policy& pol);
template <class T, class U, class Policy>
inline typename tools::promote_args<T, U>::type jacobi_theta2(T z, U q, const Policy& pol);
template <class T, class U, class Policy>
inline typename tools::promote_args<T, U>::type jacobi_theta3(T z, U q, const Policy& pol);
template <class T, class U, class Policy>
inline typename tools::promote_args<T, U>::type jacobi_theta4(T z, U q, const Policy& pol);
// Policied versions - parameterized by tau
template <class T, class U, class Policy>
inline typename tools::promote_args<T, U>::type jacobi_theta1tau(T z, U tau, const Policy& pol);
template <class T, class U, class Policy>
inline typename tools::promote_args<T, U>::type jacobi_theta2tau(T z, U tau, const Policy& pol);
template <class T, class U, class Policy>
inline typename tools::promote_args<T, U>::type jacobi_theta3tau(T z, U tau, const Policy& pol);
template <class T, class U, class Policy>
inline typename tools::promote_args<T, U>::type jacobi_theta4tau(T z, U tau, const Policy& pol);
// Policied m1 functions
template <class T, class U, class Policy>
inline typename tools::promote_args<T, U>::type jacobi_theta3m1(T z, U q, const Policy& pol);
template <class T, class U, class Policy>
inline typename tools::promote_args<T, U>::type jacobi_theta4m1(T z, U q, const Policy& pol);
template <class T, class U, class Policy>
inline typename tools::promote_args<T, U>::type jacobi_theta3m1tau(T z, U tau, const Policy& pol);
template <class T, class U, class Policy>
inline typename tools::promote_args<T, U>::type jacobi_theta4m1tau(T z, U tau, const Policy& pol);
// Compare the non-oscillating component of the delta to the previous delta.
// Both are assumed to be non-negative.
template <class RealType>
inline bool
_jacobi_theta_converged(RealType last_delta, RealType delta, RealType eps) {
return delta == 0.0 || delta < eps*last_delta;
}
template <class RealType>
inline RealType
_jacobi_theta_sum(RealType tau, RealType z_n, RealType z_increment, RealType eps) {
BOOST_MATH_STD_USING
RealType delta = 0, partial_result = 0;
RealType last_delta = 0;
do {
last_delta = delta;
delta = exp(-tau*z_n*z_n/constants::pi<RealType>());
partial_result += delta;
z_n += z_increment;
} while (!_jacobi_theta_converged(last_delta, delta, eps));
return partial_result;
}
// The following _IMAGINARY theta functions assume imaginary z and are for
// internal use only. They are designed to increase accuracy and reduce the
// number of iterations required for convergence for large |q|. The z argument
// is scaled by tau, and the summations are rewritten to be double-sided
// following DLMF 20.13.4 and 20.13.5. The return values are scaled by
// exp(-tau*z²/π)/sqrt(tau).
//
// These functions are triggered when tau < 1, i.e. |q| > exp(-π) ≅ 0.043
//
// Note that jacobi_theta4 uses the imaginary version of jacobi_theta2 (and
// vice-versa). jacobi_theta1 and jacobi_theta3 use the imaginary versions of
// themselves, following DLMF 20.7.30 - 20.7.33.
template <class RealType, class Policy>
inline RealType
_IMAGINARY_jacobi_theta1tau(RealType z, RealType tau, const Policy&) {
BOOST_MATH_STD_USING
RealType eps = policies::get_epsilon<RealType, Policy>();
RealType result = RealType(0);
// n>=0 even
result -= _jacobi_theta_sum(tau, RealType(z + constants::half_pi<RealType>()), constants::two_pi<RealType>(), eps);
// n>0 odd
result += _jacobi_theta_sum(tau, RealType(z + constants::half_pi<RealType>() + constants::pi<RealType>()), constants::two_pi<RealType>(), eps);
// n<0 odd
result += _jacobi_theta_sum(tau, RealType(z - constants::half_pi<RealType>()), RealType (-constants::two_pi<RealType>()), eps);
// n<0 even
result -= _jacobi_theta_sum(tau, RealType(z - constants::half_pi<RealType>() - constants::pi<RealType>()), RealType (-constants::two_pi<RealType>()), eps);
return result * sqrt(tau);
}
template <class RealType, class Policy>
inline RealType
_IMAGINARY_jacobi_theta2tau(RealType z, RealType tau, const Policy&) {
BOOST_MATH_STD_USING
RealType eps = policies::get_epsilon<RealType, Policy>();
RealType result = RealType(0);
// n>=0
result += _jacobi_theta_sum(tau, RealType(z + constants::half_pi<RealType>()), constants::pi<RealType>(), eps);
// n<0
result += _jacobi_theta_sum(tau, RealType(z - constants::half_pi<RealType>()), RealType (-constants::pi<RealType>()), eps);
return result * sqrt(tau);
}
template <class RealType, class Policy>
inline RealType
_IMAGINARY_jacobi_theta3tau(RealType z, RealType tau, const Policy&) {
BOOST_MATH_STD_USING
RealType eps = policies::get_epsilon<RealType, Policy>();
RealType result = 0;
// n=0
result += exp(-z*z*tau/constants::pi<RealType>());
// n>0
result += _jacobi_theta_sum(tau, RealType(z + constants::pi<RealType>()), constants::pi<RealType>(), eps);
// n<0
result += _jacobi_theta_sum(tau, RealType(z - constants::pi<RealType>()), RealType(-constants::pi<RealType>()), eps);
return result * sqrt(tau);
}
template <class RealType, class Policy>
inline RealType
_IMAGINARY_jacobi_theta4tau(RealType z, RealType tau, const Policy&) {
BOOST_MATH_STD_USING
RealType eps = policies::get_epsilon<RealType, Policy>();
RealType result = 0;
// n = 0
result += exp(-z*z*tau/constants::pi<RealType>());
// n > 0 odd
result -= _jacobi_theta_sum(tau, RealType(z + constants::pi<RealType>()), constants::two_pi<RealType>(), eps);
// n < 0 odd
result -= _jacobi_theta_sum(tau, RealType(z - constants::pi<RealType>()), RealType (-constants::two_pi<RealType>()), eps);
// n > 0 even
result += _jacobi_theta_sum(tau, RealType(z + constants::two_pi<RealType>()), constants::two_pi<RealType>(), eps);
// n < 0 even
result += _jacobi_theta_sum(tau, RealType(z - constants::two_pi<RealType>()), RealType (-constants::two_pi<RealType>()), eps);
return result * sqrt(tau);
}
// First Jacobi theta function (Parameterized by tau - assumed imaginary)
// = 2 * Σ (-1)^n * exp(iπτ*(n+1/2)^2) * sin((2n+1)z)
template <class RealType, class Policy>
inline RealType
jacobi_theta1tau_imp(RealType z, RealType tau, const Policy& pol, const char *function)
{
BOOST_MATH_STD_USING
unsigned n = 0;
RealType eps = policies::get_epsilon<RealType, Policy>();
RealType q_n = 0, last_q_n, delta, result = 0;
if (tau <= 0.0)
return policies::raise_domain_error<RealType>(function,
"tau must be greater than 0 but got %1%.", tau, pol);
if (abs(z) == 0.0)
return result;
if (tau < 1.0) {
z = fmod(z, constants::two_pi<RealType>());
while (z > constants::pi<RealType>()) {
z -= constants::two_pi<RealType>();
}
while (z < -constants::pi<RealType>()) {
z += constants::two_pi<RealType>();
}
return _IMAGINARY_jacobi_theta1tau(z, RealType(1/tau), pol);
}
do {
last_q_n = q_n;
q_n = exp(-tau * constants::pi<RealType>() * RealType(n + 0.5)*RealType(n + 0.5) );
delta = q_n * sin(RealType(2*n+1)*z);
if (n%2)
delta = -delta;
result += delta + delta;
n++;
} while (!_jacobi_theta_converged(last_q_n, q_n, eps));
return result;
}
// First Jacobi theta function (Parameterized by q)
// = 2 * Σ (-1)^n * q^(n+1/2)^2 * sin((2n+1)z)
template <class RealType, class Policy>
inline RealType
jacobi_theta1_imp(RealType z, RealType q, const Policy& pol, const char *function) {
BOOST_MATH_STD_USING
if (q <= 0.0 || q >= 1.0) {
return policies::raise_domain_error<RealType>(function,
"q must be greater than 0 and less than 1 but got %1%.", q, pol);
}
return jacobi_theta1tau_imp(z, RealType (-log(q)/constants::pi<RealType>()), pol, function);
}
// Second Jacobi theta function (Parameterized by tau - assumed imaginary)
// = 2 * Σ exp(iπτ*(n+1/2)^2) * cos((2n+1)z)
template <class RealType, class Policy>
inline RealType
jacobi_theta2tau_imp(RealType z, RealType tau, const Policy& pol, const char *function)
{
BOOST_MATH_STD_USING
unsigned n = 0;
RealType eps = policies::get_epsilon<RealType, Policy>();
RealType q_n = 0, last_q_n, delta, result = 0;
if (tau <= 0.0) {
return policies::raise_domain_error<RealType>(function,
"tau must be greater than 0 but got %1%.", tau, pol);
} else if (tau < 1.0 && abs(z) == 0.0) {
return jacobi_theta4tau(z, 1/tau, pol) / sqrt(tau);
} else if (tau < 1.0) { // DLMF 20.7.31
z = fmod(z, constants::two_pi<RealType>());
while (z > constants::pi<RealType>()) {
z -= constants::two_pi<RealType>();
}
while (z < -constants::pi<RealType>()) {
z += constants::two_pi<RealType>();
}
return _IMAGINARY_jacobi_theta4tau(z, RealType(1/tau), pol);
}
do {
last_q_n = q_n;
q_n = exp(-tau * constants::pi<RealType>() * RealType(n + 0.5)*RealType(n + 0.5));
delta = q_n * cos(RealType(2*n+1)*z);
result += delta + delta;
n++;
} while (!_jacobi_theta_converged(last_q_n, q_n, eps));
return result;
}
// Second Jacobi theta function, parameterized by q
// = 2 * Σ q^(n+1/2)^2 * cos((2n+1)z)
template <class RealType, class Policy>
inline RealType
jacobi_theta2_imp(RealType z, RealType q, const Policy& pol, const char *function) {
BOOST_MATH_STD_USING
if (q <= 0.0 || q >= 1.0) {
return policies::raise_domain_error<RealType>(function,
"q must be greater than 0 and less than 1 but got %1%.", q, pol);
}
return jacobi_theta2tau_imp(z, RealType (-log(q)/constants::pi<RealType>()), pol, function);
}
// Third Jacobi theta function, minus one (Parameterized by tau - assumed imaginary)
// This function preserves accuracy for small values of q (i.e. |q| < exp(-π) ≅ 0.043)
// For larger values of q, the minus one version usually won't help.
// = 2 * Σ exp(iπτ*(n)^2) * cos(2nz)
template <class RealType, class Policy>
inline RealType
jacobi_theta3m1tau_imp(RealType z, RealType tau, const Policy& pol)
{
BOOST_MATH_STD_USING
RealType eps = policies::get_epsilon<RealType, Policy>();
RealType q_n = 0, last_q_n, delta, result = 0;
unsigned n = 1;
if (tau < 1.0)
return jacobi_theta3tau(z, tau, pol) - RealType(1);
do {
last_q_n = q_n;
q_n = exp(-tau * constants::pi<RealType>() * RealType(n)*RealType(n));
delta = q_n * cos(RealType(2*n)*z);
result += delta + delta;
n++;
} while (!_jacobi_theta_converged(last_q_n, q_n, eps));
return result;
}
// Third Jacobi theta function, parameterized by tau
// = 1 + 2 * Σ exp(iπτ*(n)^2) * cos(2nz)
template <class RealType, class Policy>
inline RealType
jacobi_theta3tau_imp(RealType z, RealType tau, const Policy& pol, const char *function)
{
BOOST_MATH_STD_USING
if (tau <= 0.0) {
return policies::raise_domain_error<RealType>(function,
"tau must be greater than 0 but got %1%.", tau, pol);
} else if (tau < 1.0 && abs(z) == 0.0) {
return jacobi_theta3tau(z, RealType(1/tau), pol) / sqrt(tau);
} else if (tau < 1.0) { // DLMF 20.7.32
z = fmod(z, constants::pi<RealType>());
while (z > constants::half_pi<RealType>()) {
z -= constants::pi<RealType>();
}
while (z < -constants::half_pi<RealType>()) {
z += constants::pi<RealType>();
}
return _IMAGINARY_jacobi_theta3tau(z, RealType(1/tau), pol);
}
return RealType(1) + jacobi_theta3m1tau_imp(z, tau, pol);
}
// Third Jacobi theta function, minus one (parameterized by q)
// = 2 * Σ q^n^2 * cos(2nz)
template <class RealType, class Policy>
inline RealType
jacobi_theta3m1_imp(RealType z, RealType q, const Policy& pol, const char *function) {
BOOST_MATH_STD_USING
if (q <= 0.0 || q >= 1.0) {
return policies::raise_domain_error<RealType>(function,
"q must be greater than 0 and less than 1 but got %1%.", q, pol);
}
return jacobi_theta3m1tau_imp(z, RealType (-log(q)/constants::pi<RealType>()), pol);
}
// Third Jacobi theta function (parameterized by q)
// = 1 + 2 * Σ q^n^2 * cos(2nz)
template <class RealType, class Policy>
inline RealType
jacobi_theta3_imp(RealType z, RealType q, const Policy& pol, const char *function) {
BOOST_MATH_STD_USING
if (q <= 0.0 || q >= 1.0) {
return policies::raise_domain_error<RealType>(function,
"q must be greater than 0 and less than 1 but got %1%.", q, pol);
}
return jacobi_theta3tau_imp(z, RealType (-log(q)/constants::pi<RealType>()), pol, function);
}
// Fourth Jacobi theta function, minus one (Parameterized by tau)
// This function preserves accuracy for small values of q (i.e. tau > 1)
// = 2 * Σ (-1)^n exp(iπτ*(n)^2) * cos(2nz)
template <class RealType, class Policy>
inline RealType
jacobi_theta4m1tau_imp(RealType z, RealType tau, const Policy& pol)
{
BOOST_MATH_STD_USING
RealType eps = policies::get_epsilon<RealType, Policy>();
RealType q_n = 0, last_q_n, delta, result = 0;
unsigned n = 1;
if (tau < 1.0)
return jacobi_theta4tau(z, tau, pol) - RealType(1);
do {
last_q_n = q_n;
q_n = exp(-tau * constants::pi<RealType>() * RealType(n)*RealType(n));
delta = q_n * cos(RealType(2*n)*z);
if (n%2)
delta = -delta;
result += delta + delta;
n++;
} while (!_jacobi_theta_converged(last_q_n, q_n, eps));
return result;
}
// Fourth Jacobi theta function (Parameterized by tau)
// = 1 + 2 * Σ (-1)^n exp(iπτ*(n)^2) * cos(2nz)
template <class RealType, class Policy>
inline RealType
jacobi_theta4tau_imp(RealType z, RealType tau, const Policy& pol, const char *function)
{
BOOST_MATH_STD_USING
if (tau <= 0.0) {
return policies::raise_domain_error<RealType>(function,
"tau must be greater than 0 but got %1%.", tau, pol);
} else if (tau < 1.0 && abs(z) == 0.0) {
return jacobi_theta2tau(z, 1/tau, pol) / sqrt(tau);
} else if (tau < 1.0) { // DLMF 20.7.33
z = fmod(z, constants::pi<RealType>());
while (z > constants::half_pi<RealType>()) {
z -= constants::pi<RealType>();
}
while (z < -constants::half_pi<RealType>()) {
z += constants::pi<RealType>();
}
return _IMAGINARY_jacobi_theta2tau(z, RealType(1/tau), pol);
}
return RealType(1) + jacobi_theta4m1tau_imp(z, tau, pol);
}
// Fourth Jacobi theta function, minus one (Parameterized by q)
// This function preserves accuracy for small values of q
// = 2 * Σ q^n^2 * cos(2nz)
template <class RealType, class Policy>
inline RealType
jacobi_theta4m1_imp(RealType z, RealType q, const Policy& pol, const char *function) {
BOOST_MATH_STD_USING
if (q <= 0.0 || q >= 1.0) {
return policies::raise_domain_error<RealType>(function,
"q must be greater than 0 and less than 1 but got %1%.", q, pol);
}
return jacobi_theta4m1tau_imp(z, RealType (-log(q)/constants::pi<RealType>()), pol);
}
// Fourth Jacobi theta function, parameterized by q
// = 1 + 2 * Σ q^n^2 * cos(2nz)
template <class RealType, class Policy>
inline RealType
jacobi_theta4_imp(RealType z, RealType q, const Policy& pol, const char *function) {
BOOST_MATH_STD_USING
if (q <= 0.0 || q >= 1.0) {
return policies::raise_domain_error<RealType>(function,
"|q| must be greater than zero and less than 1, but got %1%.", q, pol);
}
return jacobi_theta4tau_imp(z, RealType(-log(q)/constants::pi<RealType>()), pol, function);
}
// Begin public API
template <class T, class U, class Policy>
inline typename tools::promote_args<T, U>::type jacobi_theta1tau(T z, U tau, const Policy&) {
BOOST_FPU_EXCEPTION_GUARD
typedef typename tools::promote_args<T, U>::type result_type;
typedef typename policies::normalise<
Policy,
policies::promote_float<false>,
policies::promote_double<false>,
policies::discrete_quantile<>,
policies::assert_undefined<> >::type forwarding_policy;
static const char* function = "boost::math::jacobi_theta1tau<%1%>(%1%)";
return policies::checked_narrowing_cast<result_type, Policy>(
jacobi_theta1tau_imp(static_cast<result_type>(z), static_cast<result_type>(tau),
forwarding_policy(), function), function);
}
template <class T, class U>
inline typename tools::promote_args<T, U>::type jacobi_theta1tau(T z, U tau) {
return jacobi_theta1tau(z, tau, policies::policy<>());
}
template <class T, class U, class Policy>
inline typename tools::promote_args<T, U>::type jacobi_theta1(T z, U q, const Policy&) {
BOOST_FPU_EXCEPTION_GUARD
typedef typename tools::promote_args<T, U>::type result_type;
typedef typename policies::normalise<
Policy,
policies::promote_float<false>,
policies::promote_double<false>,
policies::discrete_quantile<>,
policies::assert_undefined<> >::type forwarding_policy;
static const char* function = "boost::math::jacobi_theta1<%1%>(%1%)";
return policies::checked_narrowing_cast<result_type, Policy>(
jacobi_theta1_imp(static_cast<result_type>(z), static_cast<result_type>(q),
forwarding_policy(), function), function);
}
template <class T, class U>
inline typename tools::promote_args<T, U>::type jacobi_theta1(T z, U q) {
return jacobi_theta1(z, q, policies::policy<>());
}
template <class T, class U, class Policy>
inline typename tools::promote_args<T, U>::type jacobi_theta2tau(T z, U tau, const Policy&) {
BOOST_FPU_EXCEPTION_GUARD
typedef typename tools::promote_args<T, U>::type result_type;
typedef typename policies::normalise<
Policy,
policies::promote_float<false>,
policies::promote_double<false>,
policies::discrete_quantile<>,
policies::assert_undefined<> >::type forwarding_policy;
static const char* function = "boost::math::jacobi_theta2tau<%1%>(%1%)";
return policies::checked_narrowing_cast<result_type, Policy>(
jacobi_theta2tau_imp(static_cast<result_type>(z), static_cast<result_type>(tau),
forwarding_policy(), function), function);
}
template <class T, class U>
inline typename tools::promote_args<T, U>::type jacobi_theta2tau(T z, U tau) {
return jacobi_theta2tau(z, tau, policies::policy<>());
}
template <class T, class U, class Policy>
inline typename tools::promote_args<T, U>::type jacobi_theta2(T z, U q, const Policy&) {
BOOST_FPU_EXCEPTION_GUARD
typedef typename tools::promote_args<T, U>::type result_type;
typedef typename policies::normalise<
Policy,
policies::promote_float<false>,
policies::promote_double<false>,
policies::discrete_quantile<>,
policies::assert_undefined<> >::type forwarding_policy;
static const char* function = "boost::math::jacobi_theta2<%1%>(%1%)";
return policies::checked_narrowing_cast<result_type, Policy>(
jacobi_theta2_imp(static_cast<result_type>(z), static_cast<result_type>(q),
forwarding_policy(), function), function);
}
template <class T, class U>
inline typename tools::promote_args<T, U>::type jacobi_theta2(T z, U q) {
return jacobi_theta2(z, q, policies::policy<>());
}
template <class T, class U, class Policy>
inline typename tools::promote_args<T, U>::type jacobi_theta3m1tau(T z, U tau, const Policy&) {
BOOST_FPU_EXCEPTION_GUARD
typedef typename tools::promote_args<T, U>::type result_type;
typedef typename policies::normalise<
Policy,
policies::promote_float<false>,
policies::promote_double<false>,
policies::discrete_quantile<>,
policies::assert_undefined<> >::type forwarding_policy;
static const char* function = "boost::math::jacobi_theta3m1tau<%1%>(%1%)";
return policies::checked_narrowing_cast<result_type, Policy>(
jacobi_theta3m1tau_imp(static_cast<result_type>(z), static_cast<result_type>(tau),
forwarding_policy()), function);
}
template <class T, class U>
inline typename tools::promote_args<T, U>::type jacobi_theta3m1tau(T z, U tau) {
return jacobi_theta3m1tau(z, tau, policies::policy<>());
}
template <class T, class U, class Policy>
inline typename tools::promote_args<T, U>::type jacobi_theta3tau(T z, U tau, const Policy&) {
BOOST_FPU_EXCEPTION_GUARD
typedef typename tools::promote_args<T, U>::type result_type;
typedef typename policies::normalise<
Policy,
policies::promote_float<false>,
policies::promote_double<false>,
policies::discrete_quantile<>,
policies::assert_undefined<> >::type forwarding_policy;
static const char* function = "boost::math::jacobi_theta3tau<%1%>(%1%)";
return policies::checked_narrowing_cast<result_type, Policy>(
jacobi_theta3tau_imp(static_cast<result_type>(z), static_cast<result_type>(tau),
forwarding_policy(), function), function);
}
template <class T, class U>
inline typename tools::promote_args<T, U>::type jacobi_theta3tau(T z, U tau) {
return jacobi_theta3tau(z, tau, policies::policy<>());
}
template <class T, class U, class Policy>
inline typename tools::promote_args<T, U>::type jacobi_theta3m1(T z, U q, const Policy&) {
BOOST_FPU_EXCEPTION_GUARD
typedef typename tools::promote_args<T, U>::type result_type;
typedef typename policies::normalise<
Policy,
policies::promote_float<false>,
policies::promote_double<false>,
policies::discrete_quantile<>,
policies::assert_undefined<> >::type forwarding_policy;
static const char* function = "boost::math::jacobi_theta3m1<%1%>(%1%)";
return policies::checked_narrowing_cast<result_type, Policy>(
jacobi_theta3m1_imp(static_cast<result_type>(z), static_cast<result_type>(q),
forwarding_policy(), function), function);
}
template <class T, class U>
inline typename tools::promote_args<T, U>::type jacobi_theta3m1(T z, U q) {
return jacobi_theta3m1(z, q, policies::policy<>());
}
template <class T, class U, class Policy>
inline typename tools::promote_args<T, U>::type jacobi_theta3(T z, U q, const Policy&) {
BOOST_FPU_EXCEPTION_GUARD
typedef typename tools::promote_args<T, U>::type result_type;
typedef typename policies::normalise<
Policy,
policies::promote_float<false>,
policies::promote_double<false>,
policies::discrete_quantile<>,
policies::assert_undefined<> >::type forwarding_policy;
static const char* function = "boost::math::jacobi_theta3<%1%>(%1%)";
return policies::checked_narrowing_cast<result_type, Policy>(
jacobi_theta3_imp(static_cast<result_type>(z), static_cast<result_type>(q),
forwarding_policy(), function), function);
}
template <class T, class U>
inline typename tools::promote_args<T, U>::type jacobi_theta3(T z, U q) {
return jacobi_theta3(z, q, policies::policy<>());
}
template <class T, class U, class Policy>
inline typename tools::promote_args<T, U>::type jacobi_theta4m1tau(T z, U tau, const Policy&) {
BOOST_FPU_EXCEPTION_GUARD
typedef typename tools::promote_args<T, U>::type result_type;
typedef typename policies::normalise<
Policy,
policies::promote_float<false>,
policies::promote_double<false>,
policies::discrete_quantile<>,
policies::assert_undefined<> >::type forwarding_policy;
static const char* function = "boost::math::jacobi_theta4m1tau<%1%>(%1%)";
return policies::checked_narrowing_cast<result_type, Policy>(
jacobi_theta4m1tau_imp(static_cast<result_type>(z), static_cast<result_type>(tau),
forwarding_policy()), function);
}
template <class T, class U>
inline typename tools::promote_args<T, U>::type jacobi_theta4m1tau(T z, U tau) {
return jacobi_theta4m1tau(z, tau, policies::policy<>());
}
template <class T, class U, class Policy>
inline typename tools::promote_args<T, U>::type jacobi_theta4tau(T z, U tau, const Policy&) {
BOOST_FPU_EXCEPTION_GUARD
typedef typename tools::promote_args<T, U>::type result_type;
typedef typename policies::normalise<
Policy,
policies::promote_float<false>,
policies::promote_double<false>,
policies::discrete_quantile<>,
policies::assert_undefined<> >::type forwarding_policy;
static const char* function = "boost::math::jacobi_theta4tau<%1%>(%1%)";
return policies::checked_narrowing_cast<result_type, Policy>(
jacobi_theta4tau_imp(static_cast<result_type>(z), static_cast<result_type>(tau),
forwarding_policy(), function), function);
}
template <class T, class U>
inline typename tools::promote_args<T, U>::type jacobi_theta4tau(T z, U tau) {
return jacobi_theta4tau(z, tau, policies::policy<>());
}
template <class T, class U, class Policy>
inline typename tools::promote_args<T, U>::type jacobi_theta4m1(T z, U q, const Policy&) {
BOOST_FPU_EXCEPTION_GUARD
typedef typename tools::promote_args<T, U>::type result_type;
typedef typename policies::normalise<
Policy,
policies::promote_float<false>,
policies::promote_double<false>,
policies::discrete_quantile<>,
policies::assert_undefined<> >::type forwarding_policy;
static const char* function = "boost::math::jacobi_theta4m1<%1%>(%1%)";
return policies::checked_narrowing_cast<result_type, Policy>(
jacobi_theta4m1_imp(static_cast<result_type>(z), static_cast<result_type>(q),
forwarding_policy(), function), function);
}
template <class T, class U>
inline typename tools::promote_args<T, U>::type jacobi_theta4m1(T z, U q) {
return jacobi_theta4m1(z, q, policies::policy<>());
}
template <class T, class U, class Policy>
inline typename tools::promote_args<T, U>::type jacobi_theta4(T z, U q, const Policy&) {
BOOST_FPU_EXCEPTION_GUARD
typedef typename tools::promote_args<T, U>::type result_type;
typedef typename policies::normalise<
Policy,
policies::promote_float<false>,
policies::promote_double<false>,
policies::discrete_quantile<>,
policies::assert_undefined<> >::type forwarding_policy;
static const char* function = "boost::math::jacobi_theta4<%1%>(%1%)";
return policies::checked_narrowing_cast<result_type, Policy>(
jacobi_theta4_imp(static_cast<result_type>(z), static_cast<result_type>(q),
forwarding_policy(), function), function);
}
template <class T, class U>
inline typename tools::promote_args<T, U>::type jacobi_theta4(T z, U q) {
return jacobi_theta4(z, q, policies::policy<>());
}
}}
#endif