870 lines
27 KiB
C++
870 lines
27 KiB
C++
/*
|
|
* Copyright (c) Facebook, Inc. and its affiliates.
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
// @author: Andrei Alexandrescu
|
|
|
|
#pragma once
|
|
|
|
#include <functional>
|
|
#include <limits>
|
|
#include <memory>
|
|
#include <tuple>
|
|
#include <type_traits>
|
|
|
|
#include <folly/Portability.h>
|
|
|
|
namespace folly {
|
|
|
|
template <typename...>
|
|
struct tag_t {};
|
|
|
|
template <typename... T>
|
|
FOLLY_INLINE_VARIABLE constexpr tag_t<T...> tag{};
|
|
|
|
#if __cpp_lib_bool_constant || _MSC_VER
|
|
|
|
using std::bool_constant;
|
|
|
|
#else
|
|
|
|
// mimic: std::bool_constant, C++17
|
|
template <bool B>
|
|
using bool_constant = std::integral_constant<bool, B>;
|
|
|
|
#endif
|
|
|
|
template <std::size_t I>
|
|
using index_constant = std::integral_constant<std::size_t, I>;
|
|
|
|
namespace detail {
|
|
|
|
// is_instantiation_of_v
|
|
// is_instantiation_of
|
|
//
|
|
// A trait variable and type to check if a given type is an instantiation of a
|
|
// class template.
|
|
//
|
|
// Note that this only works with type template parameters. It does not work
|
|
// with non-type template parameters, template template parameters, or alias
|
|
// templates.
|
|
template <template <typename...> class, typename>
|
|
FOLLY_INLINE_VARIABLE constexpr bool is_instantiation_of_v = false;
|
|
template <template <typename...> class C, typename... T>
|
|
FOLLY_INLINE_VARIABLE constexpr bool is_instantiation_of_v<C, C<T...>> = true;
|
|
template <template <typename...> class C, typename... T>
|
|
struct is_instantiation_of : bool_constant<is_instantiation_of_v<C, T...>> {};
|
|
|
|
template <typename, typename>
|
|
FOLLY_INLINE_VARIABLE constexpr bool is_similar_instantiation_v = false;
|
|
template <template <typename...> class C, typename... A, typename... B>
|
|
FOLLY_INLINE_VARIABLE constexpr bool
|
|
is_similar_instantiation_v<C<A...>, C<B...>> = true;
|
|
template <typename A, typename B>
|
|
struct is_similar_instantiation
|
|
: bool_constant<is_similar_instantiation_v<A, B>> {};
|
|
|
|
} // namespace detail
|
|
|
|
namespace detail {
|
|
|
|
struct is_constexpr_default_constructible_ {
|
|
template <typename T>
|
|
static constexpr auto make(tag_t<T>) -> decltype(void(T()), 0) {
|
|
return (void(T()), 0);
|
|
}
|
|
// second param should just be: int = (void(T()), 0)
|
|
// but under clang 10, crash: https://bugs.llvm.org/show_bug.cgi?id=47620
|
|
// and, with assertions disabled, expectation failures showing compiler
|
|
// deviation from the language spec
|
|
// xcode renumbers clang versions so detection is tricky, but, if detection
|
|
// were desired, a combination of __apple_build_version__ and __clang_major__
|
|
// may be used to reduce frontend overhead under correct compilers: clang 12
|
|
// under xcode and clang 10 otherwise
|
|
template <typename T, int = make(tag<T>)>
|
|
static std::true_type sfinae(T*);
|
|
static std::false_type sfinae(void*);
|
|
template <typename T>
|
|
static constexpr bool apply =
|
|
decltype(sfinae(static_cast<T*>(nullptr)))::value;
|
|
};
|
|
|
|
} // namespace detail
|
|
|
|
// is_constexpr_default_constructible_v
|
|
// is_constexpr_default_constructible
|
|
//
|
|
// A trait variable and type which determines whether the type parameter is
|
|
// constexpr default-constructible, that is, default-constructible in a
|
|
// constexpr context.
|
|
template <typename T>
|
|
FOLLY_INLINE_VARIABLE constexpr bool is_constexpr_default_constructible_v =
|
|
detail::is_constexpr_default_constructible_::apply<T>;
|
|
template <typename T>
|
|
struct is_constexpr_default_constructible
|
|
: bool_constant<is_constexpr_default_constructible_v<T>> {};
|
|
|
|
/***
|
|
* _t
|
|
*
|
|
* Instead of:
|
|
*
|
|
* using decayed = typename std::decay<T>::type;
|
|
*
|
|
* With the C++14 standard trait aliases, we could use:
|
|
*
|
|
* using decayed = std::decay_t<T>;
|
|
*
|
|
* Without them, we could use:
|
|
*
|
|
* using decayed = _t<std::decay<T>>;
|
|
*
|
|
* Also useful for any other library with template types having dependent
|
|
* member types named `type`, like the standard trait types.
|
|
*/
|
|
template <typename T>
|
|
using _t = typename T::type;
|
|
|
|
/**
|
|
* A type trait to remove all const volatile and reference qualifiers on a
|
|
* type T
|
|
*/
|
|
template <typename T>
|
|
struct remove_cvref {
|
|
using type =
|
|
typename std::remove_cv<typename std::remove_reference<T>::type>::type;
|
|
};
|
|
template <typename T>
|
|
using remove_cvref_t = typename remove_cvref<T>::type;
|
|
|
|
namespace detail {
|
|
template <typename Src>
|
|
struct like_ {
|
|
template <typename Dst>
|
|
using apply = Dst;
|
|
};
|
|
template <typename Src>
|
|
struct like_<Src const> {
|
|
template <typename Dst>
|
|
using apply = Dst const;
|
|
};
|
|
template <typename Src>
|
|
struct like_<Src volatile> {
|
|
template <typename Dst>
|
|
using apply = Dst volatile;
|
|
};
|
|
template <typename Src>
|
|
struct like_<Src const volatile> {
|
|
template <typename Dst>
|
|
using apply = Dst const volatile;
|
|
};
|
|
template <typename Src>
|
|
struct like_<Src&> {
|
|
template <typename Dst>
|
|
using apply = typename like_<Src>::template apply<Dst>&;
|
|
};
|
|
template <typename Src>
|
|
struct like_<Src&&> {
|
|
template <typename Dst>
|
|
using apply = typename like_<Src>::template apply<Dst>&&;
|
|
};
|
|
} // namespace detail
|
|
|
|
// mimic: like_t, p0847r0
|
|
template <typename Src, typename Dst>
|
|
using like_t = typename detail::like_<Src>::template apply<remove_cvref_t<Dst>>;
|
|
|
|
// mimic: like, p0847r0
|
|
template <typename Src, typename Dst>
|
|
struct like {
|
|
using type = like_t<Src, Dst>;
|
|
};
|
|
|
|
/**
|
|
* type_t
|
|
*
|
|
* A type alias for the first template type argument. `type_t` is useful for
|
|
* controlling class-template and function-template partial specialization.
|
|
*
|
|
* Example:
|
|
*
|
|
* template <typename Value>
|
|
* class Container {
|
|
* public:
|
|
* template <typename... Args>
|
|
* Container(
|
|
* type_t<in_place_t, decltype(Value(std::declval<Args>()...))>,
|
|
* Args&&...);
|
|
* };
|
|
*
|
|
* void_t
|
|
*
|
|
* A type alias for `void`. `void_t` is useful for controling class-template
|
|
* and function-template partial specialization.
|
|
*
|
|
* Example:
|
|
*
|
|
* // has_value_type<T>::value is true if T has a nested type `value_type`
|
|
* template <class T, class = void>
|
|
* struct has_value_type
|
|
* : std::false_type {};
|
|
*
|
|
* template <class T>
|
|
* struct has_value_type<T, folly::void_t<typename T::value_type>>
|
|
* : std::true_type {};
|
|
*/
|
|
|
|
/**
|
|
* There is a bug in libstdc++, libc++, and MSVC's STL that causes it to
|
|
* ignore unused template parameter arguments in template aliases and does not
|
|
* cause substitution failures. This defect has been recorded here:
|
|
* http://open-std.org/JTC1/SC22/WG21/docs/cwg_defects.html#1558.
|
|
*
|
|
* This causes the implementation of std::void_t to be buggy, as it is likely
|
|
* defined as something like the following:
|
|
*
|
|
* template <typename...>
|
|
* using void_t = void;
|
|
*
|
|
* This causes the compiler to ignore all the template arguments and does not
|
|
* help when one wants to cause substitution failures. Rather declarations
|
|
* which have void_t in orthogonal specializations are treated as the same.
|
|
* For example, assuming the possible `T` types are only allowed to have
|
|
* either the alias `one` or `two` and never both or none:
|
|
*
|
|
* template <typename T,
|
|
* typename std::void_t<std::decay_t<T>::one>* = nullptr>
|
|
* void foo(T&&) {}
|
|
* template <typename T,
|
|
* typename std::void_t<std::decay_t<T>::two>* = nullptr>
|
|
* void foo(T&&) {}
|
|
*
|
|
* The second foo() will be a redefinition because it conflicts with the first
|
|
* one; void_t does not cause substitution failures - the template types are
|
|
* just ignored.
|
|
*/
|
|
|
|
namespace traits_detail {
|
|
template <class T, class...>
|
|
struct type_t_ {
|
|
using type = T;
|
|
};
|
|
} // namespace traits_detail
|
|
|
|
template <class T, class... Ts>
|
|
using type_t = typename traits_detail::type_t_<T, Ts...>::type;
|
|
template <class... Ts>
|
|
using void_t = type_t<void, Ts...>;
|
|
|
|
// nonesuch
|
|
//
|
|
// A tag type which traits may use to indicate lack of a result type.
|
|
//
|
|
// Similar to void in that no values of this type may be constructed. Different
|
|
// from void in that no functions may be defined with this return type and no
|
|
// complete expressions may evaluate with this expression type.
|
|
//
|
|
// mimic: std::experimental::nonesuch, Library Fundamentals TS v2
|
|
struct nonesuch {
|
|
~nonesuch() = delete;
|
|
nonesuch(nonesuch const&) = delete;
|
|
void operator=(nonesuch const&) = delete;
|
|
};
|
|
|
|
namespace detail {
|
|
|
|
template <typename Void, typename D, template <typename...> class, typename...>
|
|
struct detected_ {
|
|
using value_t = std::false_type;
|
|
using type = D;
|
|
};
|
|
template <typename D, template <typename...> class T, typename... A>
|
|
struct detected_<void_t<T<A...>>, D, T, A...> {
|
|
using value_t = std::true_type;
|
|
using type = T<A...>;
|
|
};
|
|
|
|
} // namespace detail
|
|
|
|
// detected_or
|
|
//
|
|
// If T<A...> substitutes, has member type alias value_t as std::true_type
|
|
// and has member type alias type as T<A...>. Otherwise, has member type
|
|
// alias value_t as std::false_type and has member type alias as D.
|
|
//
|
|
// mimic: std::experimental::detected_or, Library Fundamentals TS v2
|
|
template <typename D, template <typename...> class T, typename... A>
|
|
using detected_or = detail::detected_<void, D, T, A...>;
|
|
|
|
// detected_or_t
|
|
//
|
|
// A trait type alias which results in T<A...> if substitution would succeed
|
|
// and in D otherwise.
|
|
//
|
|
// Equivalent to detected_or<D, T, A...>::type.
|
|
//
|
|
// mimic: std::experimental::detected_or_t, Library Fundamentals TS v2
|
|
template <typename D, template <typename...> class T, typename... A>
|
|
using detected_or_t = typename detected_or<D, T, A...>::type;
|
|
|
|
// detected_t
|
|
//
|
|
// A trait type alias which results in T<A...> if substitution would succeed
|
|
// and in nonesuch otherwise.
|
|
//
|
|
// Equivalent to detected_or_t<nonesuch, T, A...>.
|
|
//
|
|
// mimic: std::experimental::detected_t, Library Fundamentals TS v2
|
|
template <template <typename...> class T, typename... A>
|
|
using detected_t = detected_or_t<nonesuch, T, A...>;
|
|
|
|
// is_detected_v
|
|
// is_detected
|
|
//
|
|
// A trait variable and type to test whether some metafunction from types to
|
|
// types would succeed or fail in substitution over a given set of arguments.
|
|
//
|
|
// The trait variable is_detected_v<T, A...> is equivalent to
|
|
// detected_or<nonesuch, T, A...>::value_t::value.
|
|
// The trait type is_detected<T, A...> unambiguously inherits bool_constant<V>
|
|
// where V is is_detected_v<T, A...>.
|
|
//
|
|
// mimic: std::experimental::is_detected, std::experimental::is_detected_v,
|
|
// Library Fundamentals TS v2
|
|
//
|
|
// Note: the trait type is_detected differs here by being deferred.
|
|
template <template <typename...> class T, typename... A>
|
|
FOLLY_INLINE_VARIABLE constexpr bool is_detected_v =
|
|
detected_or<nonesuch, T, A...>::value_t::value;
|
|
template <template <typename...> class T, typename... A>
|
|
struct is_detected : detected_or<nonesuch, T, A...>::value_t {};
|
|
|
|
template <typename T>
|
|
using aligned_storage_for_t =
|
|
typename std::aligned_storage<sizeof(T), alignof(T)>::type;
|
|
|
|
// Older versions of libstdc++ do not provide std::is_trivially_copyable
|
|
#if defined(__clang__) && !defined(_LIBCPP_VERSION)
|
|
template <class T>
|
|
struct is_trivially_copyable : bool_constant<__is_trivially_copyable(T)> {};
|
|
#else
|
|
template <class T>
|
|
using is_trivially_copyable = std::is_trivially_copyable<T>;
|
|
#endif
|
|
|
|
template <class T>
|
|
FOLLY_INLINE_VARIABLE constexpr bool is_trivially_copyable_v =
|
|
is_trivially_copyable<T>::value;
|
|
|
|
/**
|
|
* IsRelocatable<T>::value describes the ability of moving around
|
|
* memory a value of type T by using memcpy (as opposed to the
|
|
* conservative approach of calling the copy constructor and then
|
|
* destroying the old temporary. Essentially for a relocatable type,
|
|
* the following two sequences of code should be semantically
|
|
* equivalent:
|
|
*
|
|
* void move1(T * from, T * to) {
|
|
* new(to) T(from);
|
|
* (*from).~T();
|
|
* }
|
|
*
|
|
* void move2(T * from, T * to) {
|
|
* memcpy(to, from, sizeof(T));
|
|
* }
|
|
*
|
|
* Most C++ types are relocatable; the ones that aren't would include
|
|
* internal pointers or (very rarely) would need to update remote
|
|
* pointers to pointers tracking them. All C++ primitive types and
|
|
* type constructors are relocatable.
|
|
*
|
|
* This property can be used in a variety of optimizations. Currently
|
|
* fbvector uses this property intensively.
|
|
*
|
|
* The default conservatively assumes the type is not
|
|
* relocatable. Several specializations are defined for known
|
|
* types. You may want to add your own specializations. Do so in
|
|
* namespace folly and make sure you keep the specialization of
|
|
* IsRelocatable<SomeStruct> in the same header as SomeStruct.
|
|
*
|
|
* You may also declare a type to be relocatable by including
|
|
* `typedef std::true_type IsRelocatable;`
|
|
* in the class header.
|
|
*
|
|
* It may be unset in a base class by overriding the typedef to false_type.
|
|
*/
|
|
/*
|
|
* IsZeroInitializable describes the property that default construction is the
|
|
* same as memset(dst, 0, sizeof(T)).
|
|
*/
|
|
|
|
namespace traits_detail {
|
|
|
|
#define FOLLY_HAS_TRUE_XXX(name) \
|
|
template <typename T> \
|
|
using detect_##name = typename T::name; \
|
|
template <class T> \
|
|
struct name##_is_true : std::is_same<typename T::name, std::true_type> {}; \
|
|
template <class T> \
|
|
struct has_true_##name : std::conditional< \
|
|
is_detected_v<detect_##name, T>, \
|
|
name##_is_true<T>, \
|
|
std::false_type>::type {}
|
|
|
|
FOLLY_HAS_TRUE_XXX(IsRelocatable);
|
|
FOLLY_HAS_TRUE_XXX(IsZeroInitializable);
|
|
|
|
#undef FOLLY_HAS_TRUE_XXX
|
|
|
|
} // namespace traits_detail
|
|
|
|
struct Ignore {
|
|
Ignore() = default;
|
|
template <class T>
|
|
constexpr /* implicit */ Ignore(const T&) {}
|
|
template <class T>
|
|
const Ignore& operator=(T const&) const {
|
|
return *this;
|
|
}
|
|
};
|
|
|
|
template <class...>
|
|
using Ignored = Ignore;
|
|
|
|
namespace traits_detail_IsEqualityComparable {
|
|
Ignore operator==(Ignore, Ignore);
|
|
|
|
template <class T, class U = T>
|
|
struct IsEqualityComparable
|
|
: std::is_convertible<
|
|
decltype(std::declval<T>() == std::declval<U>()),
|
|
bool> {};
|
|
} // namespace traits_detail_IsEqualityComparable
|
|
|
|
/* using override */ using traits_detail_IsEqualityComparable::
|
|
IsEqualityComparable;
|
|
|
|
namespace traits_detail_IsLessThanComparable {
|
|
Ignore operator<(Ignore, Ignore);
|
|
|
|
template <class T, class U = T>
|
|
struct IsLessThanComparable
|
|
: std::is_convertible<
|
|
decltype(std::declval<T>() < std::declval<U>()),
|
|
bool> {};
|
|
} // namespace traits_detail_IsLessThanComparable
|
|
|
|
/* using override */ using traits_detail_IsLessThanComparable::
|
|
IsLessThanComparable;
|
|
|
|
namespace traits_detail_IsNothrowSwappable {
|
|
#if defined(__cpp_lib_is_swappable) || (_CPPLIB_VER && _HAS_CXX17)
|
|
// MSVC already implements the C++17 P0185R1 proposal which adds
|
|
// std::is_nothrow_swappable, so use it instead if C++17 mode is
|
|
// enabled.
|
|
template <typename T>
|
|
using IsNothrowSwappable = std::is_nothrow_swappable<T>;
|
|
#elif _CPPLIB_VER
|
|
// MSVC defines the base even if C++17 is disabled, and MSVC has
|
|
// issues with our fallback implementation due to over-eager
|
|
// evaluation of noexcept.
|
|
template <typename T>
|
|
using IsNothrowSwappable = std::_Is_nothrow_swappable<T>;
|
|
#else
|
|
/* using override */ using std::swap;
|
|
|
|
template <class T>
|
|
struct IsNothrowSwappable
|
|
: bool_constant<std::is_nothrow_move_constructible<T>::value&& noexcept(
|
|
swap(std::declval<T&>(), std::declval<T&>()))> {};
|
|
#endif
|
|
} // namespace traits_detail_IsNothrowSwappable
|
|
|
|
/* using override */ using traits_detail_IsNothrowSwappable::IsNothrowSwappable;
|
|
|
|
template <class T>
|
|
struct IsRelocatable
|
|
: std::conditional<
|
|
is_detected_v<traits_detail::detect_IsRelocatable, T>,
|
|
traits_detail::has_true_IsRelocatable<T>,
|
|
// TODO add this line (and some tests for it) when we
|
|
// upgrade to gcc 4.7
|
|
// std::is_trivially_move_constructible<T>::value ||
|
|
is_trivially_copyable<T>>::type {};
|
|
|
|
template <class T>
|
|
struct IsZeroInitializable
|
|
: std::conditional<
|
|
is_detected_v<traits_detail::detect_IsZeroInitializable, T>,
|
|
traits_detail::has_true_IsZeroInitializable<T>,
|
|
bool_constant<!std::is_class<T>::value>>::type {};
|
|
|
|
namespace detail {
|
|
template <bool>
|
|
struct conditional_;
|
|
template <>
|
|
struct conditional_<false> {
|
|
template <typename, typename T>
|
|
using apply = T;
|
|
};
|
|
template <>
|
|
struct conditional_<true> {
|
|
template <typename T, typename>
|
|
using apply = T;
|
|
};
|
|
} // namespace detail
|
|
|
|
// conditional_t
|
|
//
|
|
// Like std::conditional_t but with only two total class template instances,
|
|
// rather than as many class template instances as there are uses.
|
|
//
|
|
// As one effect, the result can be used in deducible contexts, allowing
|
|
// deduction of conditional_t<V, T, F> to work when T or F is a template param.
|
|
template <bool V, typename T, typename F>
|
|
using conditional_t = typename detail::conditional_<V>::template apply<T, F>;
|
|
|
|
template <typename...>
|
|
struct Conjunction : std::true_type {};
|
|
template <typename T>
|
|
struct Conjunction<T> : T {};
|
|
template <typename T, typename... TList>
|
|
struct Conjunction<T, TList...>
|
|
: std::conditional<T::value, Conjunction<TList...>, T>::type {};
|
|
|
|
template <typename...>
|
|
struct Disjunction : std::false_type {};
|
|
template <typename T>
|
|
struct Disjunction<T> : T {};
|
|
template <typename T, typename... TList>
|
|
struct Disjunction<T, TList...>
|
|
: std::conditional<T::value, T, Disjunction<TList...>>::type {};
|
|
|
|
template <typename T>
|
|
struct Negation : bool_constant<!T::value> {};
|
|
|
|
template <bool... Bs>
|
|
struct Bools {
|
|
using valid_type = bool;
|
|
static constexpr std::size_t size() { return sizeof...(Bs); }
|
|
};
|
|
|
|
// Lighter-weight than Conjunction, but evaluates all sub-conditions eagerly.
|
|
template <class... Ts>
|
|
struct StrictConjunction
|
|
: std::is_same<Bools<Ts::value...>, Bools<(Ts::value || true)...>> {};
|
|
|
|
template <class... Ts>
|
|
struct StrictDisjunction
|
|
: Negation<
|
|
std::is_same<Bools<Ts::value...>, Bools<(Ts::value && false)...>>> {};
|
|
|
|
namespace detail {
|
|
template <typename T>
|
|
using is_transparent_ = typename T::is_transparent;
|
|
} // namespace detail
|
|
|
|
// is_transparent_v
|
|
// is_transparent
|
|
//
|
|
// A trait variable and type to test whether a less, equal-to, or hash type
|
|
// follows the is-transparent protocol used by containers with optional
|
|
// heterogeneous access.
|
|
template <typename T>
|
|
FOLLY_INLINE_VARIABLE constexpr bool is_transparent_v =
|
|
is_detected_v<detail::is_transparent_, T>;
|
|
template <typename T>
|
|
struct is_transparent : bool_constant<is_transparent_v<T>> {};
|
|
|
|
} // namespace folly
|
|
|
|
/**
|
|
* Use this macro ONLY inside namespace folly. When using it with a
|
|
* regular type, use it like this:
|
|
*
|
|
* // Make sure you're at namespace ::folly scope
|
|
* template <> FOLLY_ASSUME_RELOCATABLE(MyType)
|
|
*
|
|
* When using it with a template type, use it like this:
|
|
*
|
|
* // Make sure you're at namespace ::folly scope
|
|
* template <class T1, class T2>
|
|
* FOLLY_ASSUME_RELOCATABLE(MyType<T1, T2>)
|
|
*/
|
|
#define FOLLY_ASSUME_RELOCATABLE(...) \
|
|
struct IsRelocatable<__VA_ARGS__> : std::true_type {}
|
|
|
|
/**
|
|
* The FOLLY_ASSUME_FBVECTOR_COMPATIBLE* macros below encode the
|
|
* assumption that the type is relocatable per IsRelocatable
|
|
* above. Many types can be assumed to satisfy this condition, but
|
|
* it is the responsibility of the user to state that assumption.
|
|
* User-defined classes will not be optimized for use with
|
|
* fbvector (see FBVector.h) unless they state that assumption.
|
|
*
|
|
* Use FOLLY_ASSUME_FBVECTOR_COMPATIBLE with regular types like this:
|
|
*
|
|
* FOLLY_ASSUME_FBVECTOR_COMPATIBLE(MyType)
|
|
*
|
|
* The versions FOLLY_ASSUME_FBVECTOR_COMPATIBLE_1, _2, _3, and _4
|
|
* allow using the macro for describing templatized classes with 1, 2,
|
|
* 3, and 4 template parameters respectively. For template classes
|
|
* just use the macro with the appropriate number and pass the name of
|
|
* the template to it. Example:
|
|
*
|
|
* template <class T1, class T2> class MyType { ... };
|
|
* ...
|
|
* // Make sure you're at global scope
|
|
* FOLLY_ASSUME_FBVECTOR_COMPATIBLE_2(MyType)
|
|
*/
|
|
|
|
// Use this macro ONLY at global level (no namespace)
|
|
#define FOLLY_ASSUME_FBVECTOR_COMPATIBLE(...) \
|
|
namespace folly { \
|
|
template <> \
|
|
FOLLY_ASSUME_RELOCATABLE(__VA_ARGS__); \
|
|
}
|
|
// Use this macro ONLY at global level (no namespace)
|
|
#define FOLLY_ASSUME_FBVECTOR_COMPATIBLE_1(...) \
|
|
namespace folly { \
|
|
template <class T1> \
|
|
FOLLY_ASSUME_RELOCATABLE(__VA_ARGS__<T1>); \
|
|
}
|
|
// Use this macro ONLY at global level (no namespace)
|
|
#define FOLLY_ASSUME_FBVECTOR_COMPATIBLE_2(...) \
|
|
namespace folly { \
|
|
template <class T1, class T2> \
|
|
FOLLY_ASSUME_RELOCATABLE(__VA_ARGS__<T1, T2>); \
|
|
}
|
|
// Use this macro ONLY at global level (no namespace)
|
|
#define FOLLY_ASSUME_FBVECTOR_COMPATIBLE_3(...) \
|
|
namespace folly { \
|
|
template <class T1, class T2, class T3> \
|
|
FOLLY_ASSUME_RELOCATABLE(__VA_ARGS__<T1, T2, T3>); \
|
|
}
|
|
// Use this macro ONLY at global level (no namespace)
|
|
#define FOLLY_ASSUME_FBVECTOR_COMPATIBLE_4(...) \
|
|
namespace folly { \
|
|
template <class T1, class T2, class T3, class T4> \
|
|
FOLLY_ASSUME_RELOCATABLE(__VA_ARGS__<T1, T2, T3, T4>); \
|
|
}
|
|
|
|
namespace folly {
|
|
|
|
// STL commonly-used types
|
|
template <class T, class U>
|
|
struct IsRelocatable<std::pair<T, U>>
|
|
: bool_constant<IsRelocatable<T>::value && IsRelocatable<U>::value> {};
|
|
|
|
// Is T one of T1, T2, ..., Tn?
|
|
template <typename T, typename... Ts>
|
|
using IsOneOf = StrictDisjunction<std::is_same<T, Ts>...>;
|
|
|
|
/*
|
|
* Complementary type traits for integral comparisons.
|
|
*
|
|
* For instance, `if(x < 0)` yields an error in clang for unsigned types
|
|
* when -Werror is used due to -Wtautological-compare
|
|
*
|
|
*
|
|
* @author: Marcelo Juchem <marcelo@fb.com>
|
|
*/
|
|
|
|
// same as `x < 0`
|
|
template <typename T>
|
|
constexpr bool is_negative(T x) {
|
|
return std::is_signed<T>::value && x < T(0);
|
|
}
|
|
|
|
// same as `x <= 0`
|
|
template <typename T>
|
|
constexpr bool is_non_positive(T x) {
|
|
return !x || folly::is_negative(x);
|
|
}
|
|
|
|
// same as `x > 0`
|
|
template <typename T>
|
|
constexpr bool is_positive(T x) {
|
|
return !is_non_positive(x);
|
|
}
|
|
|
|
// same as `x >= 0`
|
|
template <typename T>
|
|
constexpr bool is_non_negative(T x) {
|
|
return !x || is_positive(x);
|
|
}
|
|
|
|
namespace detail {
|
|
|
|
// folly::to integral specializations can end up generating code
|
|
// inside what are really static ifs (not executed because of the templated
|
|
// types) that violate -Wsign-compare and/or -Wbool-compare so suppress them
|
|
// in order to not prevent all calling code from using it.
|
|
FOLLY_PUSH_WARNING
|
|
FOLLY_GNU_DISABLE_WARNING("-Wsign-compare")
|
|
FOLLY_GCC_DISABLE_WARNING("-Wbool-compare")
|
|
FOLLY_MSVC_DISABLE_WARNING(4287) // unsigned/negative constant mismatch
|
|
FOLLY_MSVC_DISABLE_WARNING(4388) // sign-compare
|
|
FOLLY_MSVC_DISABLE_WARNING(4804) // bool-compare
|
|
|
|
template <typename RHS, RHS rhs, typename LHS>
|
|
bool less_than_impl(LHS const lhs) {
|
|
// clang-format off
|
|
return
|
|
// Ensure signed and unsigned values won't be compared directly.
|
|
(!std::is_signed<RHS>::value && is_negative(lhs)) ? true :
|
|
(!std::is_signed<LHS>::value && is_negative(rhs)) ? false :
|
|
rhs > std::numeric_limits<LHS>::max() ? true :
|
|
rhs <= std::numeric_limits<LHS>::min() ? false :
|
|
lhs < rhs;
|
|
// clang-format on
|
|
}
|
|
|
|
template <typename RHS, RHS rhs, typename LHS>
|
|
bool greater_than_impl(LHS const lhs) {
|
|
// clang-format off
|
|
return
|
|
// Ensure signed and unsigned values won't be compared directly.
|
|
(!std::is_signed<RHS>::value && is_negative(lhs)) ? false :
|
|
(!std::is_signed<LHS>::value && is_negative(rhs)) ? true :
|
|
rhs > std::numeric_limits<LHS>::max() ? false :
|
|
rhs < std::numeric_limits<LHS>::min() ? true :
|
|
lhs > rhs;
|
|
// clang-format on
|
|
}
|
|
|
|
FOLLY_POP_WARNING
|
|
|
|
} // namespace detail
|
|
|
|
template <typename RHS, RHS rhs, typename LHS>
|
|
bool less_than(LHS const lhs) {
|
|
return detail::
|
|
less_than_impl<RHS, rhs, typename std::remove_reference<LHS>::type>(lhs);
|
|
}
|
|
|
|
template <typename RHS, RHS rhs, typename LHS>
|
|
bool greater_than(LHS const lhs) {
|
|
return detail::
|
|
greater_than_impl<RHS, rhs, typename std::remove_reference<LHS>::type>(
|
|
lhs);
|
|
}
|
|
} // namespace folly
|
|
|
|
// Assume nothing when compiling with MSVC.
|
|
#ifndef _MSC_VER
|
|
FOLLY_ASSUME_FBVECTOR_COMPATIBLE_2(std::unique_ptr)
|
|
FOLLY_ASSUME_FBVECTOR_COMPATIBLE_1(std::shared_ptr)
|
|
#endif
|
|
|
|
namespace folly {
|
|
|
|
// Some compilers have signed __int128 and unsigned __int128 types, and some
|
|
// libraries with some compilers have traits for those types. It's a mess.
|
|
// Import things into folly and then fill in whatever is missing.
|
|
//
|
|
// The aliases:
|
|
// int128_t
|
|
// uint128_t
|
|
//
|
|
// The traits:
|
|
// is_arithmetic
|
|
// is_arithmetic_v
|
|
// is_integral
|
|
// is_integral_v
|
|
// is_signed
|
|
// is_signed_v
|
|
// is_unsigned
|
|
// is_unsigned_v
|
|
// make_signed
|
|
// make_signed_t
|
|
// make_unsigned
|
|
// make_unsigned_t
|
|
|
|
template <typename T>
|
|
struct is_arithmetic : std::is_arithmetic<T> {};
|
|
template <typename T>
|
|
FOLLY_INLINE_VARIABLE constexpr bool is_arithmetic_v = is_arithmetic<T>::value;
|
|
|
|
template <typename T>
|
|
struct is_integral : std::is_integral<T> {};
|
|
template <typename T>
|
|
FOLLY_INLINE_VARIABLE constexpr bool is_integral_v = is_integral<T>::value;
|
|
|
|
template <typename T>
|
|
struct is_signed : std::is_signed<T> {};
|
|
template <typename T>
|
|
FOLLY_INLINE_VARIABLE constexpr bool is_signed_v = is_signed<T>::value;
|
|
|
|
template <typename T>
|
|
struct is_unsigned : std::is_unsigned<T> {};
|
|
template <typename T>
|
|
FOLLY_INLINE_VARIABLE constexpr bool is_unsigned_v = is_unsigned<T>::value;
|
|
|
|
template <typename T>
|
|
struct make_signed : std::make_signed<T> {};
|
|
template <typename T>
|
|
using make_signed_t = typename make_signed<T>::type;
|
|
|
|
template <typename T>
|
|
struct make_unsigned : std::make_unsigned<T> {};
|
|
template <typename T>
|
|
using make_unsigned_t = typename make_unsigned<T>::type;
|
|
|
|
#if FOLLY_HAVE_INT128_T
|
|
|
|
using int128_t = signed __int128;
|
|
using uint128_t = unsigned __int128;
|
|
|
|
template <>
|
|
struct is_arithmetic<int128_t> : std::true_type {};
|
|
template <>
|
|
struct is_arithmetic<uint128_t> : std::true_type {};
|
|
|
|
template <>
|
|
struct is_integral<int128_t> : std::true_type {};
|
|
template <>
|
|
struct is_integral<uint128_t> : std::true_type {};
|
|
|
|
template <>
|
|
struct is_signed<int128_t> : std::true_type {};
|
|
template <>
|
|
struct is_signed<uint128_t> : std::false_type {};
|
|
template <>
|
|
struct is_unsigned<int128_t> : std::false_type {};
|
|
template <>
|
|
struct is_unsigned<uint128_t> : std::true_type {};
|
|
|
|
template <>
|
|
struct make_signed<int128_t> {
|
|
using type = int128_t;
|
|
};
|
|
template <>
|
|
struct make_signed<uint128_t> {
|
|
using type = int128_t;
|
|
};
|
|
|
|
template <>
|
|
struct make_unsigned<int128_t> {
|
|
using type = uint128_t;
|
|
};
|
|
template <>
|
|
struct make_unsigned<uint128_t> {
|
|
using type = uint128_t;
|
|
};
|
|
#endif // FOLLY_HAVE_INT128_T
|
|
|
|
} // namespace folly
|