unioil-loyalty-rn-app/ios/Pods/RCT-Folly/folly/lang/ToAscii.h

425 lines
14 KiB
C++

/*
* Copyright (c) Facebook, Inc. and its affiliates.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <cstring>
#include <folly/ConstexprMath.h>
#include <folly/Likely.h>
#include <folly/Portability.h>
#include <folly/Utility.h>
#include <folly/lang/Align.h>
#include <folly/lang/CArray.h>
#include <folly/portability/Builtins.h>
namespace folly {
// to_ascii_alphabet
//
// Used implicity by to_ascii_lower and to_ascii_upper below.
//
// This alphabet translates digits to 0-9,a-z or 0-9,A-Z. The largest supported
// base is 36; operator() presumes an argument less than that.
//
// Alternative alphabets may be used with to_ascii_with provided they match
// the constructibility/destructibility and the interface of this one.
template <bool Upper>
struct to_ascii_alphabet {
// operator()
//
// Translates a single digit to 0-9,a-z or 0-9,A-Z.
//
// async-signal-safe
constexpr char operator()(uint8_t b) const {
return b < 10 ? '0' + b : (Upper ? 'A' : 'a') + (b - 10);
}
};
using to_ascii_alphabet_lower = to_ascii_alphabet<false>;
using to_ascii_alphabet_upper = to_ascii_alphabet<true>;
namespace detail {
template <uint64_t Base, typename Alphabet>
struct to_ascii_array {
using data_type_ = c_array<uint8_t, Base>;
static constexpr data_type_ data_() {
data_type_ result{};
Alphabet alpha;
for (size_t i = 0; i < Base; ++i) {
result.data[i] = alpha(static_cast<uint8_t>(i));
}
return result;
}
// @lint-ignore CLANGTIDY
static data_type_ const data;
constexpr char operator()(uint8_t index) const { // also an alphabet
return data.data[index];
}
};
template <uint64_t Base, typename Alphabet>
alignas(kIsMobile ? sizeof(size_t) : hardware_constructive_interference_size)
typename to_ascii_array<Base, Alphabet>::data_type_ const
to_ascii_array<Base, Alphabet>::data =
to_ascii_array<Base, Alphabet>::data_();
extern template to_ascii_array<8, to_ascii_alphabet_lower>::data_type_ const
to_ascii_array<8, to_ascii_alphabet_lower>::data;
extern template to_ascii_array<10, to_ascii_alphabet_lower>::data_type_ const
to_ascii_array<10, to_ascii_alphabet_lower>::data;
extern template to_ascii_array<16, to_ascii_alphabet_lower>::data_type_ const
to_ascii_array<16, to_ascii_alphabet_lower>::data;
extern template to_ascii_array<8, to_ascii_alphabet_upper>::data_type_ const
to_ascii_array<8, to_ascii_alphabet_upper>::data;
extern template to_ascii_array<10, to_ascii_alphabet_upper>::data_type_ const
to_ascii_array<10, to_ascii_alphabet_upper>::data;
extern template to_ascii_array<16, to_ascii_alphabet_upper>::data_type_ const
to_ascii_array<16, to_ascii_alphabet_upper>::data;
template <uint64_t Base, typename Alphabet>
struct to_ascii_table {
using data_type_ = c_array<uint16_t, Base * Base>;
static constexpr data_type_ data_() {
data_type_ result{};
Alphabet alpha;
for (size_t i = 0; i < Base * Base; ++i) {
result.data[i] = //
(alpha(uint8_t(i / Base)) << (kIsLittleEndian ? 0 : 8)) |
(alpha(uint8_t(i % Base)) << (kIsLittleEndian ? 8 : 0));
}
return result;
}
// @lint-ignore CLANGTIDY
static data_type_ const data;
};
template <uint64_t Base, typename Alphabet>
alignas(hardware_constructive_interference_size)
typename to_ascii_table<Base, Alphabet>::data_type_ const
to_ascii_table<Base, Alphabet>::data =
to_ascii_table<Base, Alphabet>::data_();
extern template to_ascii_table<8, to_ascii_alphabet_lower>::data_type_ const
to_ascii_table<8, to_ascii_alphabet_lower>::data;
extern template to_ascii_table<10, to_ascii_alphabet_lower>::data_type_ const
to_ascii_table<10, to_ascii_alphabet_lower>::data;
extern template to_ascii_table<16, to_ascii_alphabet_lower>::data_type_ const
to_ascii_table<16, to_ascii_alphabet_lower>::data;
extern template to_ascii_table<8, to_ascii_alphabet_upper>::data_type_ const
to_ascii_table<8, to_ascii_alphabet_upper>::data;
extern template to_ascii_table<10, to_ascii_alphabet_upper>::data_type_ const
to_ascii_table<10, to_ascii_alphabet_upper>::data;
extern template to_ascii_table<16, to_ascii_alphabet_upper>::data_type_ const
to_ascii_table<16, to_ascii_alphabet_upper>::data;
template <uint64_t Base, typename I>
struct to_ascii_powers {
static constexpr size_t size_(I v) {
return 1 + (v < Base ? 0 : size_(v / Base));
}
static constexpr size_t const size = size_(~I(0));
using data_type_ = c_array<I, size>;
static constexpr data_type_ data_() {
data_type_ result{};
for (size_t i = 0; i < size; ++i) {
result.data[i] = constexpr_pow(Base, i);
}
return result;
}
// @lint-ignore CLANGTIDY
static data_type_ const data;
};
template <uint64_t Base, typename I>
constexpr size_t const to_ascii_powers<Base, I>::size;
template <uint64_t Base, typename I>
alignas(hardware_constructive_interference_size)
typename to_ascii_powers<Base, I>::data_type_ const
to_ascii_powers<Base, I>::data = to_ascii_powers<Base, I>::data_();
extern template to_ascii_powers<8, uint64_t>::data_type_ const
to_ascii_powers<8, uint64_t>::data;
extern template to_ascii_powers<10, uint64_t>::data_type_ const
to_ascii_powers<10, uint64_t>::data;
extern template to_ascii_powers<16, uint64_t>::data_type_ const
to_ascii_powers<16, uint64_t>::data;
template <uint64_t Base>
FOLLY_ALWAYS_INLINE size_t to_ascii_size_imuls(uint64_t v) {
using powers = to_ascii_powers<Base, uint64_t>;
uint64_t p = 1;
for (size_t i = 0u; i < powers::size; ++i, p *= Base) {
if (FOLLY_UNLIKELY(v < p)) {
return i + size_t(i == 0);
}
}
return powers::size;
}
template <uint64_t Base>
FOLLY_ALWAYS_INLINE size_t to_ascii_size_idivs(uint64_t v) {
size_t i = 1;
while (v >= Base) {
i += 1;
v /= Base;
}
return i;
}
template <uint64_t Base>
FOLLY_ALWAYS_INLINE size_t to_ascii_size_array(uint64_t v) {
using powers = to_ascii_powers<Base, uint64_t>;
for (size_t i = 0u; i < powers::size; ++i) {
if (FOLLY_LIKELY(v < powers::data.data[i])) {
return i + size_t(i == 0);
}
}
return powers::size;
}
// For some architectures, we can get a little help from clzll, the "count
// leading zeros" builtin, which is backed by a single performant instruction.
//
// Note that the compiler implements __builtin_clzll on all architectures, but
// only emits a single clzll instruction when the architecture has one.
//
// This implementation may be faster than the basic ones in the general case
// because the time taken to compute this one is constant for non-zero v,
// whereas the basic ones take time proportional to log<2>(v). Whether this one
// is actually faster depends on the emitted code for this implementation and
// on whether the loops in the basic implementations are unrolled.
template <uint64_t Base>
FOLLY_ALWAYS_INLINE size_t to_ascii_size_clzll(uint64_t v) {
using powers = to_ascii_powers<Base, uint64_t>;
// clzll is undefined for 0; must special case this
if (FOLLY_UNLIKELY(!v)) {
return 1;
}
// log2 is approx log<2>(v)
size_t const vlog2 = 64 - static_cast<size_t>(__builtin_clzll(v));
// work around msvc warning C4127 (conditional expression is constant)
bool false_ = false;
// handle directly when Base is power-of-two
if (false_ || !(Base & (Base - 1))) {
constexpr auto const blog2 = constexpr_log2(Base);
return vlog2 / blog2 + size_t(vlog2 % blog2 != 0);
}
// blog2r is approx 1 / log<2>(Base), used in log change-of-base just below
constexpr auto const blog2r = 8. / constexpr_log2(constexpr_pow(Base, 8));
// vlogb is approx log<Base>(v) = log<2>(v) / log<2>(Base)
auto const vlogb = vlog2 * size_t(blog2r * 256) / 256;
// return vlogb, adjusted if necessary
return vlogb + size_t(vlogb < powers::size && v >= powers::data.data[vlogb]);
}
template <uint64_t Base>
FOLLY_ALWAYS_INLINE size_t to_ascii_size_route(uint64_t v) {
return kIsArchAmd64 && !(Base & (Base - 1)) //
? to_ascii_size_clzll<Base>(v)
: to_ascii_size_array<Base>(v);
}
// The straightforward implementation, assuming the size known in advance.
//
// The straightforward implementation without the size known in advance would
// entail emitting the bytes backward and then reversing them at the end, once
// the size is known.
template <uint64_t Base, typename Alphabet>
FOLLY_ALWAYS_INLINE void to_ascii_with_basic(
char* out, size_t size, uint64_t v) {
Alphabet const xlate;
for (auto pos = size - 1; pos; --pos) {
// keep /, % together so a peephole optimization computes them together
auto const q = v / Base;
auto const r = v % Base;
out[pos] = xlate(uint8_t(r));
v = q;
}
out[0] = xlate(uint8_t(v));
}
// A variant of the straightforward implementation, but using a lookup table.
template <uint64_t Base, typename Alphabet>
FOLLY_ALWAYS_INLINE void to_ascii_with_array(
char* out, size_t size, uint64_t v) {
using array = to_ascii_array<Base, Alphabet>; // also an alphabet
to_ascii_with_basic<Base, array>(out, size, v);
}
// A trickier implementation which performs half as many divides as the other,
// more straightforward, implementation. On modern hardware, the divides are
// the bottleneck (even when the compiler emits a complicated sequence of add,
// sub, and mul instructions with special constants to simulate a divide by a
// fixed denominator).
//
// The downside of this implementation is that the emitted code is larger,
// especially when the divide is simulated, which affects inlining decisions.
template <uint64_t Base, typename Alphabet>
FOLLY_ALWAYS_INLINE void to_ascii_with_table(
char* out, size_t size, uint64_t v) {
using table = to_ascii_table<Base, Alphabet>;
auto pos = size - 2;
while (FOLLY_UNLIKELY(v >= Base * Base)) {
// keep /, % together so a peephole optimization computes them together
auto const q = v / (Base * Base);
auto const r = v % (Base * Base);
auto const val = table::data.data[size_t(r)];
std::memcpy(out + pos, &val, 2);
pos -= 2;
v = q;
}
auto const val = table::data.data[size_t(v)];
if (FOLLY_UNLIKELY(size % 2 == 0)) {
std::memcpy(out, &val, 2);
} else {
*out = val >> (kIsLittleEndian ? 8 : 0);
}
}
template <uint64_t Base, typename Alphabet>
FOLLY_ALWAYS_INLINE size_t to_ascii_with_table(char* out, uint64_t v) {
auto const size = to_ascii_size_route<Base>(v);
to_ascii_with_table<Base, Alphabet>(out, size, v);
return size;
}
template <uint64_t Base, typename Alphabet>
FOLLY_ALWAYS_INLINE size_t
to_ascii_with_route(char* outb, char const* oute, uint64_t v) {
auto const size = to_ascii_size_route<Base>(v);
if (FOLLY_UNLIKELY(oute < outb || size_t(oute - outb) < size)) {
return 0;
}
kIsMobile //
? to_ascii_with_array<Base, Alphabet>(outb, size, v)
: to_ascii_with_table<Base, Alphabet>(outb, size, v);
return size;
}
template <uint64_t Base, typename Alphabet, size_t N>
FOLLY_ALWAYS_INLINE size_t to_ascii_with_route(char (&out)[N], uint64_t v) {
static_assert(N >= to_ascii_powers<Base, decltype(v)>::size, "out too small");
return to_ascii_with_table<Base, Alphabet>(out, v);
}
} // namespace detail
// to_ascii_size_max
//
// The maximum size buffer that might be required to hold the ascii-encoded
// representation of any value of unsigned type I in base Base.
//
// In base 10, u64 requires at most 20 bytes, u32 at most 10, u16 at most 5,
// and u8 at most 3.
template <uint64_t Base, typename I>
FOLLY_INLINE_VARIABLE constexpr size_t to_ascii_size_max =
detail::to_ascii_powers<Base, I>::size;
// to_ascii_size_max_decimal
//
// An alias to to_ascii_size_max<10>.
template <typename I>
FOLLY_INLINE_VARIABLE constexpr size_t to_ascii_size_max_decimal =
to_ascii_size_max<10, I>;
// to_ascii_size
//
// Returns the number of digits in the base Base representation of a uint64_t.
// Useful for preallocating buffers, etc.
//
// async-signal-safe
template <uint64_t Base>
size_t to_ascii_size(uint64_t v) {
return detail::to_ascii_size_route<Base>(v);
}
// to_ascii_size_decimal
//
// An alias to to_ascii_size<10>.
//
// async-signal-safe
inline size_t to_ascii_size_decimal(uint64_t v) {
return to_ascii_size<10>(v);
}
// to_ascii_with
//
// Copies the digits of v, in base Base, translated with Alphabet, into buffer
// and returns the number of bytes written.
//
// Does *not* append a null terminator. It is the caller's responsibility to
// append a null terminator if one is required.
//
// Assumes buffer points to at least to_ascii_size<Base>(v) bytes of writable
// memory. It is the caller's responsibility to provide a writable buffer with
// the required min size.
//
// async-signal-safe
template <uint64_t Base, typename Alphabet>
size_t to_ascii_with(char* outb, char const* oute, uint64_t v) {
return detail::to_ascii_with_route<Base, Alphabet>(outb, oute, v);
}
template <uint64_t Base, typename Alphabet, size_t N>
size_t to_ascii_with(char (&out)[N], uint64_t v) {
return detail::to_ascii_with_route<Base, Alphabet>(out, v);
}
// to_ascii_lower
//
// Composes to_ascii_with with to_ascii_alphabet_lower.
//
// async-signal-safe
template <uint64_t Base>
size_t to_ascii_lower(char* outb, char const* oute, uint64_t v) {
return to_ascii_with<Base, to_ascii_alphabet_lower>(outb, oute, v);
}
template <uint64_t Base, size_t N>
size_t to_ascii_lower(char (&out)[N], uint64_t v) {
return to_ascii_with<Base, to_ascii_alphabet_lower>(out, v);
}
// to_ascii_upper
//
// Composes to_ascii_with with to_ascii_alphabet_upper.
//
// async-signal-safe
template <uint64_t Base>
size_t to_ascii_upper(char* outb, char const* oute, uint64_t v) {
return to_ascii_with<Base, to_ascii_alphabet_upper>(outb, oute, v);
}
template <uint64_t Base, size_t N>
size_t to_ascii_upper(char (&out)[N], uint64_t v) {
return to_ascii_with<Base, to_ascii_alphabet_upper>(out, v);
}
// to_ascii_decimal
//
// An alias to to_ascii<10, false>.
//
// async-signals-afe
inline size_t to_ascii_decimal(char* outb, char const* oute, uint64_t v) {
return to_ascii_lower<10>(outb, oute, v);
}
template <size_t N>
inline size_t to_ascii_decimal(char (&out)[N], uint64_t v) {
return to_ascii_lower<10>(out, v);
}
} // namespace folly