unioil-loyalty-rn-app/ios/Pods/Flipper-Folly/folly/fibers/Fiber.cpp

259 lines
6.9 KiB
C++

/*
* Copyright (c) Facebook, Inc. and its affiliates.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <folly/fibers/Fiber.h>
#include <algorithm>
#include <cstring>
#include <stdexcept>
#include <glog/logging.h>
#include <folly/Likely.h>
#include <folly/Portability.h>
#include <folly/fibers/FiberManagerInternal.h>
#include <folly/portability/SysSyscall.h>
#include <folly/portability/Unistd.h>
namespace folly {
namespace fibers {
namespace {
const uint64_t kMagic8Bytes = 0xfaceb00cfaceb00c;
std::thread::id localThreadId() {
return std::this_thread::get_id();
}
/* Size of the region from p + nBytes down to the last non-magic value */
size_t nonMagicInBytes(unsigned char* stackLimit, size_t stackSize) {
CHECK_EQ(reinterpret_cast<intptr_t>(stackLimit) % sizeof(uint64_t), 0u);
CHECK_EQ(stackSize % sizeof(uint64_t), 0u);
auto begin = reinterpret_cast<uint64_t*>(stackLimit);
auto end = reinterpret_cast<uint64_t*>(stackLimit + stackSize);
auto firstNonMagic = std::find_if(
begin, end, [](uint64_t val) { return val != kMagic8Bytes; });
return (end - firstNonMagic) * sizeof(uint64_t);
}
} // namespace
void Fiber::resume() {
DCHECK_EQ(state_, AWAITING);
state_ = READY_TO_RUN;
if (fiberManager_.observer_) {
fiberManager_.observer_->runnable(reinterpret_cast<uintptr_t>(this));
}
if (LIKELY(threadId_ == localThreadId())) {
fiberManager_.readyFibers_.push_back(*this);
fiberManager_.ensureLoopScheduled();
} else {
fiberManager_.remoteReadyInsert(this);
}
}
Fiber::Fiber(FiberManager& fiberManager)
: fiberManager_(fiberManager),
fiberStackSize_(fiberManager_.options_.stackSize),
fiberStackLimit_(fiberManager_.stackAllocator_.allocate(fiberStackSize_)),
fiberImpl_([this] { fiberFunc(); }, fiberStackLimit_, fiberStackSize_) {
fiberManager_.allFibers_.push_back(*this);
}
void Fiber::init(bool recordStackUsed) {
// It is necessary to disable the logic for ASAN because we change
// the fiber's stack.
#ifndef FOLLY_SANITIZE_ADDRESS
recordStackUsed_ = recordStackUsed;
if (UNLIKELY(recordStackUsed_ && !stackFilledWithMagic_)) {
CHECK_EQ(
reinterpret_cast<intptr_t>(fiberStackLimit_) % sizeof(uint64_t), 0u);
CHECK_EQ(fiberStackSize_ % sizeof(uint64_t), 0u);
std::fill(
reinterpret_cast<uint64_t*>(fiberStackLimit_),
reinterpret_cast<uint64_t*>(fiberStackLimit_ + fiberStackSize_),
kMagic8Bytes);
stackFilledWithMagic_ = true;
// newer versions of boost allocate context on fiber stack,
// need to create a new one
fiberImpl_ =
FiberImpl([this] { fiberFunc(); }, fiberStackLimit_, fiberStackSize_);
}
#else
(void)recordStackUsed;
#endif
}
Fiber::~Fiber() {
#ifdef FOLLY_SANITIZE_ADDRESS
if (asanFakeStack_ != nullptr) {
fiberManager_.freeFakeStack(asanFakeStack_);
}
fiberManager_.unpoisonFiberStack(this);
#endif
fiberManager_.stackAllocator_.deallocate(fiberStackLimit_, fiberStackSize_);
}
void Fiber::recordStackPosition() {
// For ASAN builds, functions may run on fake stack.
// So we cannot get meaningful stack position.
#ifndef FOLLY_SANITIZE_ADDRESS
int stackDummy;
auto currentPosition = static_cast<size_t>(
fiberStackLimit_ + fiberStackSize_ -
static_cast<unsigned char*>(static_cast<void*>(&stackDummy)));
fiberManager_.recordStackPosition(currentPosition);
VLOG(4) << "Stack usage: " << currentPosition;
#endif
}
[[noreturn]] void Fiber::fiberFunc() {
#ifdef FOLLY_SANITIZE_ADDRESS
fiberManager_.registerFinishSwitchStackWithAsan(
nullptr, &asanMainStackBase_, &asanMainStackSize_);
#endif
while (true) {
DCHECK_EQ(state_, NOT_STARTED);
threadId_ = localThreadId();
if (taskOptions_.logRunningTime) {
prevDuration_ = std::chrono::microseconds(0);
currStartTime_ = std::chrono::steady_clock::now();
}
state_ = RUNNING;
try {
if (resultFunc_) {
DCHECK(finallyFunc_);
DCHECK(!func_);
resultFunc_();
} else {
DCHECK(func_);
func_();
}
} catch (...) {
fiberManager_.exceptionCallback_(
std::current_exception(), "running Fiber func_/resultFunc_");
}
if (UNLIKELY(recordStackUsed_)) {
auto newHighWatermark = fiberManager_.recordStackPosition(
nonMagicInBytes(fiberStackLimit_, fiberStackSize_));
VLOG(3) << "Max stack usage: " << newHighWatermark;
CHECK_LT(newHighWatermark, fiberManager_.options_.stackSize - 64)
<< "Fiber stack overflow";
}
state_ = INVALID;
fiberManager_.deactivateFiber(this);
}
}
void Fiber::preempt(State state) {
auto preemptImpl = [&]() mutable {
DCHECK_EQ(fiberManager_.activeFiber_, this);
DCHECK_EQ(state_, RUNNING);
DCHECK_NE(state, RUNNING);
if (state != AWAITING_IMMEDIATE) {
CHECK(fiberManager_.currentException_ == std::current_exception());
CHECK_EQ(fiberManager_.numUncaughtExceptions_, uncaught_exceptions());
}
if (taskOptions_.logRunningTime) {
auto now = std::chrono::steady_clock::now();
prevDuration_ += now - currStartTime_;
currStartTime_ = now;
}
state_ = state;
recordStackPosition();
fiberManager_.deactivateFiber(this);
// Resumed from preemption
DCHECK_EQ(fiberManager_.activeFiber_, this);
DCHECK_EQ(state_, READY_TO_RUN);
if (taskOptions_.logRunningTime) {
currStartTime_ = std::chrono::steady_clock::now();
}
state_ = RUNNING;
};
if (fiberManager_.preemptRunner_) {
fiberManager_.preemptRunner_->run(std::ref(preemptImpl));
} else {
preemptImpl();
}
}
Fiber::LocalData::~LocalData() {
reset();
}
Fiber::LocalData::LocalData(const LocalData& other) : data_(nullptr) {
*this = other;
}
Fiber::LocalData& Fiber::LocalData::operator=(const LocalData& other) {
reset();
if (!other.data_) {
return *this;
}
dataSize_ = other.dataSize_;
dataType_ = other.dataType_;
dataDestructor_ = other.dataDestructor_;
dataCopyConstructor_ = other.dataCopyConstructor_;
if (dataSize_ <= kBufferSize) {
data_ = &buffer_;
} else {
data_ = allocateHeapBuffer(dataSize_);
}
dataCopyConstructor_(data_, other.data_);
return *this;
}
void Fiber::LocalData::reset() {
if (!data_) {
return;
}
dataDestructor_(data_);
data_ = nullptr;
}
void* Fiber::LocalData::allocateHeapBuffer(size_t size) {
return new char[size];
}
void Fiber::LocalData::freeHeapBuffer(void* buffer) {
delete[] reinterpret_cast<char*>(buffer);
}
} // namespace fibers
} // namespace folly