unioil-loyalty-rn-app/ios/Pods/Flipper-Folly/folly/experimental/symbolizer/SignalHandler.cpp

569 lines
14 KiB
C++

/*
* Copyright (c) Facebook, Inc. and its affiliates.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
// This is heavily inspired by the signal handler from google-glog
#include <folly/experimental/symbolizer/SignalHandler.h>
#include <signal.h>
#include <sys/types.h>
#include <algorithm>
#include <atomic>
#include <cerrno>
#include <ctime>
#include <mutex>
#include <vector>
#include <glog/logging.h>
#include <folly/ScopeGuard.h>
#include <folly/experimental/symbolizer/Symbolizer.h>
#include <folly/lang/ToAscii.h>
#include <folly/portability/SysSyscall.h>
#include <folly/portability/Unistd.h>
namespace folly {
namespace symbolizer {
#ifndef _WIN32
const unsigned long kAllFatalSignals = (1UL << SIGSEGV) | (1UL << SIGILL) |
(1UL << SIGFPE) | (1UL << SIGABRT) | (1UL << SIGBUS) | (1UL << SIGTERM) |
(1UL << SIGQUIT);
#endif
namespace {
/**
* Fatal signal handler registry.
*/
class FatalSignalCallbackRegistry {
public:
FatalSignalCallbackRegistry();
void add(SignalCallback func);
void markInstalled();
void run();
private:
std::atomic<bool> installed_;
std::mutex mutex_;
std::vector<SignalCallback> handlers_;
};
FatalSignalCallbackRegistry::FatalSignalCallbackRegistry()
: installed_(false) {}
void FatalSignalCallbackRegistry::add(SignalCallback func) {
std::lock_guard<std::mutex> lock(mutex_);
CHECK(!installed_) << "FatalSignalCallbackRegistry::add may not be used "
"after installing the signal handlers.";
handlers_.push_back(func);
}
void FatalSignalCallbackRegistry::markInstalled() {
std::lock_guard<std::mutex> lock(mutex_);
CHECK(!installed_.exchange(true))
<< "FatalSignalCallbackRegistry::markInstalled must be called "
<< "at most once";
}
void FatalSignalCallbackRegistry::run() {
if (!installed_) {
return;
}
for (auto& fn : handlers_) {
fn();
}
}
std::atomic<FatalSignalCallbackRegistry*> gFatalSignalCallbackRegistry{};
FatalSignalCallbackRegistry* getFatalSignalCallbackRegistry() {
// Leak it so we don't have to worry about destruction order
static FatalSignalCallbackRegistry* fatalSignalCallbackRegistry =
new FatalSignalCallbackRegistry();
return fatalSignalCallbackRegistry;
}
} // namespace
void addFatalSignalCallback(SignalCallback cb) {
getFatalSignalCallbackRegistry()->add(cb);
}
void installFatalSignalCallbacks() {
getFatalSignalCallbackRegistry()->markInstalled();
}
#ifndef _WIN32
namespace {
struct {
int number;
const char* name;
struct sigaction oldAction;
} kFatalSignals[] = {
{SIGSEGV, "SIGSEGV", {}},
{SIGILL, "SIGILL", {}},
{SIGFPE, "SIGFPE", {}},
{SIGABRT, "SIGABRT", {}},
{SIGBUS, "SIGBUS", {}},
{SIGTERM, "SIGTERM", {}},
{SIGQUIT, "SIGQUIT", {}},
{0, nullptr, {}},
};
FOLLY_MAYBE_UNUSED void callPreviousSignalHandler(int signum) {
// Restore disposition to old disposition, then kill ourselves with the same
// signal. The signal will be blocked until we return from our handler,
// then it will invoke the default handler and abort.
for (auto p = kFatalSignals; p->name; ++p) {
if (p->number == signum) {
sigaction(signum, &p->oldAction, nullptr);
raise(signum);
return;
}
}
// Not one of the signals we know about. Oh well. Reset to default.
struct sigaction sa;
memset(&sa, 0, sizeof(sa));
sa.sa_handler = SIG_DFL;
sigaction(signum, &sa, nullptr);
raise(signum);
}
#if FOLLY_USE_SYMBOLIZER
// Note: not thread-safe, but that's okay, as we only let one thread
// in our signal handler at a time.
//
// Leak it so we don't have to worry about destruction order
//
// Initialized by installFatalSignalHandler
SafeStackTracePrinter* gStackTracePrinter;
void print(StringPiece sp) {
gStackTracePrinter->print(sp);
}
void flush() {
gStackTracePrinter->flush();
}
void printDec(uint64_t val) {
char buf[to_ascii_size_max_decimal<uint64_t>];
size_t n = to_ascii_decimal(buf, val);
gStackTracePrinter->print(StringPiece(buf, n));
}
void printHex(uint64_t val) {
char buf[2 + to_ascii_size_max<16, uint64_t>];
auto out = buf + 0;
*out++ = '0';
*out++ = 'x';
out += to_ascii_lower<16>(out, buf + sizeof(buf), val);
gStackTracePrinter->print(StringPiece(buf, out - buf));
}
void dumpTimeInfo() {
SCOPE_EXIT { flush(); };
time_t now = time(nullptr);
print("*** Aborted at ");
printDec(now);
print(" (Unix time, try 'date -d @");
printDec(now);
print("') ***\n");
}
const char* sigill_reason(int si_code) {
switch (si_code) {
case ILL_ILLOPC:
return "illegal opcode";
case ILL_ILLOPN:
return "illegal operand";
case ILL_ILLADR:
return "illegal addressing mode";
case ILL_ILLTRP:
return "illegal trap";
case ILL_PRVOPC:
return "privileged opcode";
case ILL_PRVREG:
return "privileged register";
case ILL_COPROC:
return "coprocessor error";
case ILL_BADSTK:
return "internal stack error";
default:
return nullptr;
}
}
const char* sigfpe_reason(int si_code) {
switch (si_code) {
case FPE_INTDIV:
return "integer divide by zero";
case FPE_INTOVF:
return "integer overflow";
case FPE_FLTDIV:
return "floating-point divide by zero";
case FPE_FLTOVF:
return "floating-point overflow";
case FPE_FLTUND:
return "floating-point underflow";
case FPE_FLTRES:
return "floating-point inexact result";
case FPE_FLTINV:
return "floating-point invalid operation";
case FPE_FLTSUB:
return "subscript out of range";
default:
return nullptr;
}
}
const char* sigsegv_reason(int si_code) {
switch (si_code) {
case SEGV_MAPERR:
return "address not mapped to object";
case SEGV_ACCERR:
return "invalid permissions for mapped object";
default:
return nullptr;
}
}
const char* sigbus_reason(int si_code) {
switch (si_code) {
case BUS_ADRALN:
return "invalid address alignment";
case BUS_ADRERR:
return "nonexistent physical address";
case BUS_OBJERR:
return "object-specific hardware error";
// MCEERR_AR and MCEERR_AO: in sigaction(2) but not in headers.
default:
return nullptr;
}
}
const char* sigtrap_reason(int si_code) {
switch (si_code) {
case TRAP_BRKPT:
return "process breakpoint";
case TRAP_TRACE:
return "process trace trap";
// TRAP_BRANCH and TRAP_HWBKPT: in sigaction(2) but not in headers.
default:
return nullptr;
}
}
const char* sigchld_reason(int si_code) {
switch (si_code) {
case CLD_EXITED:
return "child has exited";
case CLD_KILLED:
return "child was killed";
case CLD_DUMPED:
return "child terminated abnormally";
case CLD_TRAPPED:
return "traced child has trapped";
case CLD_STOPPED:
return "child has stopped";
case CLD_CONTINUED:
return "stopped child has continued";
default:
return nullptr;
}
}
const char* sigio_reason(int si_code) {
switch (si_code) {
case POLL_IN:
return "data input available";
case POLL_OUT:
return "output buffers available";
case POLL_MSG:
return "input message available";
case POLL_ERR:
return "I/O error";
case POLL_PRI:
return "high priority input available";
case POLL_HUP:
return "device disconnected";
default:
return nullptr;
}
}
const char* signal_reason(int signum, int si_code) {
switch (signum) {
case SIGILL:
return sigill_reason(si_code);
case SIGFPE:
return sigfpe_reason(si_code);
case SIGSEGV:
return sigsegv_reason(si_code);
case SIGBUS:
return sigbus_reason(si_code);
case SIGTRAP:
return sigtrap_reason(si_code);
case SIGCHLD:
return sigchld_reason(si_code);
case SIGIO:
return sigio_reason(si_code); // aka SIGPOLL
default:
return nullptr;
}
}
void dumpSignalInfo(int signum, siginfo_t* siginfo) {
SCOPE_EXIT { flush(); };
// Get the signal name, if possible.
const char* name = nullptr;
for (auto p = kFatalSignals; p->name; ++p) {
if (p->number == signum) {
name = p->name;
break;
}
}
print("*** Signal ");
printDec(signum);
if (name) {
print(" (");
print(name);
print(")");
}
print(" (");
printHex(reinterpret_cast<uint64_t>(siginfo->si_addr));
print(") received by PID ");
printDec(getpid());
print(" (pthread TID ");
printHex((uint64_t)pthread_self());
#if defined(__linux__)
print(") (linux TID ");
printDec(syscall(__NR_gettid));
#elif defined(__FreeBSD__)
long tid = 0;
syscall(432, &tid);
print(") (freebsd TID ");
printDec(tid);
#endif
// Kernel-sourced signals don't give us useful info for pid/uid.
if (siginfo->si_code <= 0) {
print(") (maybe from PID ");
printDec(siginfo->si_pid);
print(", UID ");
printDec(siginfo->si_uid);
}
auto reason = signal_reason(signum, siginfo->si_code);
print(") (code: ");
// If we can't find a reason code make a best effort to print the (int) code.
if (reason != nullptr) {
print(reason);
} else {
if (siginfo->si_code < 0) {
print("-");
printDec(-siginfo->si_code);
} else {
printDec(siginfo->si_code);
}
}
print("), stack trace: ***\n");
}
// On Linux, pthread_t is a pointer, so 0 is an invalid value, which we
// take to indicate "no thread in the signal handler".
//
// POSIX defines PTHREAD_NULL for this purpose, but that's not available.
constexpr pthread_t kInvalidThreadId = 0;
std::atomic<pthread_t> gSignalThread(kInvalidThreadId);
std::atomic<bool> gInRecursiveSignalHandler(false);
// Here be dragons.
void innerSignalHandler(int signum, siginfo_t* info, void* /* uctx */) {
// First, let's only let one thread in here at a time.
pthread_t myId = pthread_self();
pthread_t prevSignalThread = kInvalidThreadId;
while (!gSignalThread.compare_exchange_strong(prevSignalThread, myId)) {
if (pthread_equal(prevSignalThread, myId)) {
// First time here. Try to dump the stack trace without symbolization.
// If we still fail, well, we're mightily screwed, so we do nothing the
// next time around.
if (!gInRecursiveSignalHandler.exchange(true)) {
print("Entered fatal signal handler recursively. We're in trouble.\n");
gStackTracePrinter->printStackTrace(false); // no symbolization
}
return;
}
// Wait a while, try again.
timespec ts;
ts.tv_sec = 0;
ts.tv_nsec = 100L * 1000 * 1000; // 100ms
nanosleep(&ts, nullptr);
prevSignalThread = kInvalidThreadId;
}
dumpTimeInfo();
dumpSignalInfo(signum, info);
gStackTracePrinter->printStackTrace(true); // with symbolization
// Run user callbacks
auto callbacks = gFatalSignalCallbackRegistry.load(std::memory_order_acquire);
if (callbacks) {
callbacks->run();
}
}
namespace {
std::atomic<bool> gFatalSignalReceived{false};
} // namespace
void signalHandler(int signum, siginfo_t* info, void* uctx) {
gFatalSignalReceived.store(true, std::memory_order_relaxed);
int savedErrno = errno;
SCOPE_EXIT {
flush();
errno = savedErrno;
};
innerSignalHandler(signum, info, uctx);
gSignalThread = kInvalidThreadId;
// Kill ourselves with the previous handler.
callPreviousSignalHandler(signum);
}
#endif // FOLLY_USE_SYMBOLIZER
// Small sigaltstack size threshold.
// 8931 is known to cause the signal handler to stack overflow during
// symbolization even for a simple one-liner "kill(getpid(), SIGTERM)".
constexpr size_t kSmallSigAltStackSize = 8931;
FOLLY_MAYBE_UNUSED bool isSmallSigAltStackEnabled() {
stack_t ss;
if (sigaltstack(nullptr, &ss) != 0) {
return false;
}
if ((ss.ss_flags & SS_DISABLE) != 0) {
return false;
}
return ss.ss_size <= kSmallSigAltStackSize;
}
} // namespace
#endif // _WIN32
namespace {
std::atomic<bool> gAlreadyInstalled;
}
void installFatalSignalHandler(std::bitset<64> signals) {
if (gAlreadyInstalled.exchange(true)) {
// Already done.
return;
}
// make sure gFatalSignalCallbackRegistry is created before we
// install the fatal signal handler
gFatalSignalCallbackRegistry.store(
getFatalSignalCallbackRegistry(), std::memory_order_release);
#if FOLLY_USE_SYMBOLIZER
// If a small sigaltstack is enabled (ex. Rust stdlib might use sigaltstack
// to set a small stack), the default SafeStackTracePrinter would likely
// stack overflow. Replace it with the unsafe self-allocate printer.
bool useUnsafePrinter = kIsLinux && isSmallSigAltStackEnabled();
if (useUnsafePrinter) {
#if FOLLY_HAVE_SWAPCONTEXT
gStackTracePrinter = new UnsafeSelfAllocateStackTracePrinter();
#else
// This environment does not support swapcontext, so always use
// SafeStackTracePrinter.
gStackTracePrinter = new SafeStackTracePrinter();
#endif // FOLLY_HAVE_SWAPCONTEXT
} else {
gStackTracePrinter = new SafeStackTracePrinter();
}
struct sigaction sa;
memset(&sa, 0, sizeof(sa));
if (useUnsafePrinter) {
// The signal handler is not async-signal-safe. Block all signals to
// make it safer. But it's still unsafe.
sigfillset(&sa.sa_mask);
} else {
sigemptyset(&sa.sa_mask);
}
// By default signal handlers are run on the signaled thread's stack.
// In case of stack overflow running the SIGSEGV signal handler on
// the same stack leads to another SIGSEGV and crashes the program.
// Use SA_ONSTACK, so alternate stack is used (only if configured via
// sigaltstack).
// Golang also requires SA_ONSTACK. See:
// https://golang.org/pkg/os/signal/#hdr-Go_programs_that_use_cgo_or_SWIG
sa.sa_flags |= SA_SIGINFO | SA_ONSTACK;
sa.sa_sigaction = &signalHandler;
for (auto p = kFatalSignals; p->name; ++p) {
if ((p->number < static_cast<int>(signals.size())) &&
signals.test(p->number)) {
CHECK_ERR(sigaction(p->number, &sa, &p->oldAction));
}
}
#endif // FOLLY_USE_SYMBOLIZER
}
bool fatalSignalReceived() {
#ifdef FOLLY_USE_SYMBOLIZER
return gFatalSignalReceived.load(std::memory_order_relaxed);
#else
return false;
#endif
}
} // namespace symbolizer
} // namespace folly