unioil-loyalty-rn-app/ios/Pods/Flipper-Boost-iOSX/boost/math/tools/polynomial_gcd.hpp

210 lines
5.9 KiB
C++

// (C) Copyright Jeremy William Murphy 2016.
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_MATH_TOOLS_POLYNOMIAL_GCD_HPP
#define BOOST_MATH_TOOLS_POLYNOMIAL_GCD_HPP
#ifdef _MSC_VER
#pragma once
#endif
#include <boost/math/tools/polynomial.hpp>
#include <boost/integer/common_factor_rt.hpp>
#include <boost/type_traits/is_pod.hpp>
namespace boost{
namespace integer {
namespace gcd_detail {
template <class T>
struct gcd_traits;
template <class T>
struct gcd_traits<boost::math::tools::polynomial<T> >
{
inline static const boost::math::tools::polynomial<T>& abs(const boost::math::tools::polynomial<T>& val) { return val; }
static const method_type method = method_euclid;
};
}
}
namespace math{ namespace tools{
/* From Knuth, 4.6.1:
*
* We may write any nonzero polynomial u(x) from R[x] where R is a UFD as
*
* u(x) = cont(u) . pp(u(x))
*
* where cont(u), the content of u, is an element of S, and pp(u(x)), the primitive
* part of u(x), is a primitive polynomial over S.
* When u(x) = 0, it is convenient to define cont(u) = pp(u(x)) = O.
*/
template <class T>
T content(polynomial<T> const &x)
{
return x ? boost::integer::gcd_range(x.data().begin(), x.data().end()).first : T(0);
}
// Knuth, 4.6.1
template <class T>
polynomial<T> primitive_part(polynomial<T> const &x, T const &cont)
{
return x ? x / cont : polynomial<T>();
}
template <class T>
polynomial<T> primitive_part(polynomial<T> const &x)
{
return primitive_part(x, content(x));
}
// Trivial but useful convenience function referred to simply as l() in Knuth.
template <class T>
T leading_coefficient(polynomial<T> const &x)
{
return x ? x.data().back() : T(0);
}
namespace detail
{
/* Reduce u and v to their primitive parts and return the gcd of their
* contents. Used in a couple of gcd algorithms.
*/
template <class T>
T reduce_to_primitive(polynomial<T> &u, polynomial<T> &v)
{
using boost::integer::gcd;
T const u_cont = content(u), v_cont = content(v);
u /= u_cont;
v /= v_cont;
return gcd(u_cont, v_cont);
}
}
/**
* Knuth, The Art of Computer Programming: Volume 2, Third edition, 1998
* Algorithm 4.6.1C: Greatest common divisor over a unique factorization domain.
*
* The subresultant algorithm by George E. Collins [JACM 14 (1967), 128-142],
* later improved by W. S. Brown and J. F. Traub [JACM 18 (1971), 505-514].
*
* Although step C3 keeps the coefficients to a "reasonable" size, they are
* still potentially several binary orders of magnitude larger than the inputs.
* Thus, this algorithm should only be used where T is a multi-precision type.
*
* @tparam T Polynomial coefficient type.
* @param u First polynomial.
* @param v Second polynomial.
* @return Greatest common divisor of polynomials u and v.
*/
template <class T>
typename enable_if_c< std::numeric_limits<T>::is_integer, polynomial<T> >::type
subresultant_gcd(polynomial<T> u, polynomial<T> v)
{
using std::swap;
BOOST_ASSERT(u || v);
if (!u)
return v;
if (!v)
return u;
typedef typename polynomial<T>::size_type N;
if (u.degree() < v.degree())
swap(u, v);
T const d = detail::reduce_to_primitive(u, v);
T g = 1, h = 1;
polynomial<T> r;
while (true)
{
BOOST_ASSERT(u.degree() >= v.degree());
// Pseudo-division.
r = u % v;
if (!r)
return d * primitive_part(v); // Attach the content.
if (r.degree() == 0)
return d * polynomial<T>(T(1)); // The content is the result.
N const delta = u.degree() - v.degree();
// Adjust remainder.
u = v;
v = r / (g * detail::integer_power(h, delta));
g = leading_coefficient(u);
T const tmp = detail::integer_power(g, delta);
if (delta <= N(1))
h = tmp * detail::integer_power(h, N(1) - delta);
else
h = tmp / detail::integer_power(h, delta - N(1));
}
}
/**
* @brief GCD for polynomials with unbounded multi-precision integral coefficients.
*
* The multi-precision constraint is enforced via numeric_limits.
*
* Note that intermediate terms in the evaluation can grow arbitrarily large, hence the need for
* unbounded integers, otherwise numeric loverflow would break the algorithm.
*
* @tparam T A multi-precision integral type.
*/
template <typename T>
typename enable_if_c<std::numeric_limits<T>::is_integer && !std::numeric_limits<T>::is_bounded, polynomial<T> >::type
gcd(polynomial<T> const &u, polynomial<T> const &v)
{
return subresultant_gcd(u, v);
}
// GCD over bounded integers is not currently allowed:
template <typename T>
typename enable_if_c<std::numeric_limits<T>::is_integer && std::numeric_limits<T>::is_bounded, polynomial<T> >::type
gcd(polynomial<T> const &u, polynomial<T> const &v)
{
BOOST_STATIC_ASSERT_MSG(sizeof(v) == 0, "GCD on polynomials of bounded integers is disallowed due to the excessive growth in the size of intermediate terms.");
return subresultant_gcd(u, v);
}
// GCD over polynomials of floats can go via the Euclid algorithm:
template <typename T>
typename enable_if_c<!std::numeric_limits<T>::is_integer && (std::numeric_limits<T>::min_exponent != std::numeric_limits<T>::max_exponent) && !std::numeric_limits<T>::is_exact, polynomial<T> >::type
gcd(polynomial<T> const &u, polynomial<T> const &v)
{
return boost::integer::gcd_detail::Euclid_gcd(u, v);
}
}
//
// Using declaration so we overload the default implementation in this namespace:
//
using boost::math::tools::gcd;
}
namespace integer
{
//
// Using declaration so we overload the default implementation in this namespace:
//
using boost::math::tools::gcd;
}
} // namespace boost::math::tools
#endif