unioil-loyalty-rn-app/ios/Pods/Flipper-Boost-iOSX/boost/geometry/algorithms/union.hpp

700 lines
22 KiB
C++

// Boost.Geometry (aka GGL, Generic Geometry Library)
// Copyright (c) 2007-2014 Barend Gehrels, Amsterdam, the Netherlands.
// This file was modified by Oracle on 2014-2020.
// Modifications copyright (c) 2014-2020 Oracle and/or its affiliates.
// Contributed and/or modified by Menelaos Karavelas, on behalf of Oracle
// Contributed and/or modified by Adam Wulkiewicz, on behalf of Oracle
// Use, modification and distribution is subject to the Boost Software License,
// Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_GEOMETRY_ALGORITHMS_UNION_HPP
#define BOOST_GEOMETRY_ALGORITHMS_UNION_HPP
#include <boost/range/value_type.hpp>
#include <boost/geometry/algorithms/not_implemented.hpp>
#include <boost/geometry/algorithms/detail/overlay/overlay.hpp>
#include <boost/geometry/core/point_order.hpp>
#include <boost/geometry/core/reverse_dispatch.hpp>
#include <boost/geometry/geometries/concepts/check.hpp>
#include <boost/geometry/policies/robustness/get_rescale_policy.hpp>
#include <boost/geometry/strategies/default_strategy.hpp>
#include <boost/geometry/strategies/detail.hpp>
#include <boost/geometry/strategies/relate/services.hpp>
#include <boost/geometry/util/range.hpp>
#include <boost/geometry/algorithms/detail/intersection/multi.hpp>
#include <boost/geometry/algorithms/detail/overlay/intersection_insert.hpp>
#include <boost/geometry/algorithms/detail/overlay/linear_linear.hpp>
#include <boost/geometry/algorithms/detail/overlay/pointlike_pointlike.hpp>
namespace boost { namespace geometry
{
#ifndef DOXYGEN_NO_DISPATCH
namespace dispatch
{
template
<
typename Geometry1, typename Geometry2, typename GeometryOut,
typename TagIn1 = typename tag<Geometry1>::type,
typename TagIn2 = typename tag<Geometry2>::type,
typename TagOut = typename detail::setop_insert_output_tag<GeometryOut>::type,
typename CastedTagIn1 = typename geometry::tag_cast<TagIn1, areal_tag, linear_tag, pointlike_tag>::type,
typename CastedTagIn2 = typename geometry::tag_cast<TagIn2, areal_tag, linear_tag, pointlike_tag>::type,
typename CastedTagOut = typename geometry::tag_cast<TagOut, areal_tag, linear_tag, pointlike_tag>::type,
bool Reverse = geometry::reverse_dispatch<Geometry1, Geometry2>::type::value
>
struct union_insert: not_implemented<TagIn1, TagIn2, TagOut>
{};
// If reversal is needed, perform it first
template
<
typename Geometry1, typename Geometry2, typename GeometryOut,
typename TagIn1, typename TagIn2, typename TagOut,
typename CastedTagIn1, typename CastedTagIn2, typename CastedTagOut
>
struct union_insert
<
Geometry1, Geometry2, GeometryOut,
TagIn1, TagIn2, TagOut,
CastedTagIn1, CastedTagIn2, CastedTagOut,
true
>
{
template <typename RobustPolicy, typename OutputIterator, typename Strategy>
static inline OutputIterator apply(Geometry1 const& g1,
Geometry2 const& g2,
RobustPolicy const& robust_policy,
OutputIterator out,
Strategy const& strategy)
{
return union_insert
<
Geometry2, Geometry1, GeometryOut
>::apply(g2, g1, robust_policy, out, strategy);
}
};
template
<
typename Geometry1, typename Geometry2, typename GeometryOut,
typename TagIn1, typename TagIn2, typename TagOut
>
struct union_insert
<
Geometry1, Geometry2, GeometryOut,
TagIn1, TagIn2, TagOut,
areal_tag, areal_tag, areal_tag,
false
> : detail::overlay::overlay
<
Geometry1, Geometry2,
detail::overlay::do_reverse<geometry::point_order<Geometry1>::value>::value,
detail::overlay::do_reverse<geometry::point_order<Geometry2>::value>::value,
detail::overlay::do_reverse<geometry::point_order<GeometryOut>::value>::value,
GeometryOut,
overlay_union
>
{};
// dispatch for union of linear geometries
template
<
typename Linear1, typename Linear2, typename LineStringOut,
typename TagIn1, typename TagIn2
>
struct union_insert
<
Linear1, Linear2, LineStringOut,
TagIn1, TagIn2, linestring_tag,
linear_tag, linear_tag, linear_tag,
false
> : detail::overlay::linear_linear_linestring
<
Linear1, Linear2, LineStringOut, overlay_union
>
{};
// dispatch for point-like geometries
template
<
typename PointLike1, typename PointLike2, typename PointOut,
typename TagIn1, typename TagIn2
>
struct union_insert
<
PointLike1, PointLike2, PointOut,
TagIn1, TagIn2, point_tag,
pointlike_tag, pointlike_tag, pointlike_tag,
false
> : detail::overlay::union_pointlike_pointlike_point
<
PointLike1, PointLike2, PointOut
>
{};
template
<
typename Geometry1, typename Geometry2, typename SingleTupledOut,
typename TagIn1, typename TagIn2,
typename CastedTagIn
>
struct union_insert
<
Geometry1, Geometry2, SingleTupledOut,
TagIn1, TagIn2, detail::tupled_output_tag,
CastedTagIn, CastedTagIn, detail::tupled_output_tag,
false
>
{
typedef typename geometry::detail::single_tag_from_base_tag
<
CastedTagIn
>::type single_tag;
typedef detail::expect_output
<
Geometry1, Geometry2, SingleTupledOut, single_tag
> expect_check;
typedef typename geometry::detail::output_geometry_access
<
SingleTupledOut, single_tag, single_tag
> access;
template <typename RobustPolicy, typename OutputIterator, typename Strategy>
static inline OutputIterator apply(Geometry1 const& g1,
Geometry2 const& g2,
RobustPolicy const& robust_policy,
OutputIterator out,
Strategy const& strategy)
{
access::get(out) = union_insert
<
Geometry2, Geometry1, typename access::type
>::apply(g2, g1, robust_policy, access::get(out), strategy);
return out;
}
};
template
<
typename Geometry1, typename Geometry2, typename SingleTupledOut,
typename SingleTag1, typename SingleTag2,
bool Geometry1LesserTopoDim = (topological_dimension<Geometry1>::value
< topological_dimension<Geometry2>::value)
>
struct union_insert_tupled_different
{
typedef typename geometry::detail::output_geometry_access
<
SingleTupledOut, SingleTag1, SingleTag1
> access1;
typedef typename geometry::detail::output_geometry_access
<
SingleTupledOut, SingleTag2, SingleTag2
> access2;
template <typename RobustPolicy, typename OutputIterator, typename Strategy>
static inline OutputIterator apply(Geometry1 const& g1,
Geometry2 const& g2,
RobustPolicy const& robust_policy,
OutputIterator out,
Strategy const& strategy)
{
access1::get(out) = geometry::dispatch::intersection_insert
<
Geometry1, Geometry2,
typename access1::type,
overlay_difference,
geometry::detail::overlay::do_reverse<geometry::point_order<Geometry1>::value>::value,
geometry::detail::overlay::do_reverse<geometry::point_order<Geometry2>::value, true>::value
>::apply(g1, g2, robust_policy, access1::get(out), strategy);
access2::get(out) = geometry::detail::convert_to_output
<
Geometry2,
typename access2::type
>::apply(g2, access2::get(out));
return out;
}
};
template
<
typename Geometry1, typename Geometry2, typename SingleTupledOut,
typename SingleTag1, typename SingleTag2
>
struct union_insert_tupled_different
<
Geometry1, Geometry2, SingleTupledOut, SingleTag1, SingleTag2, false
>
{
template <typename RobustPolicy, typename OutputIterator, typename Strategy>
static inline OutputIterator apply(Geometry1 const& g1,
Geometry2 const& g2,
RobustPolicy const& robust_policy,
OutputIterator out,
Strategy const& strategy)
{
return union_insert_tupled_different
<
Geometry2, Geometry1, SingleTupledOut, SingleTag2, SingleTag1, true
>::apply(g2, g1, robust_policy, out, strategy);
}
};
template
<
typename Geometry1, typename Geometry2, typename SingleTupledOut,
typename TagIn1, typename TagIn2,
typename CastedTagIn1, typename CastedTagIn2
>
struct union_insert
<
Geometry1, Geometry2, SingleTupledOut,
TagIn1, TagIn2, detail::tupled_output_tag,
CastedTagIn1, CastedTagIn2, detail::tupled_output_tag,
false
>
{
typedef typename geometry::detail::single_tag_from_base_tag
<
CastedTagIn1
>::type single_tag1;
typedef detail::expect_output
<
Geometry1, Geometry2, SingleTupledOut, single_tag1
> expect_check1;
typedef typename geometry::detail::single_tag_from_base_tag
<
CastedTagIn2
>::type single_tag2;
typedef detail::expect_output
<
Geometry1, Geometry2, SingleTupledOut, single_tag2
> expect_check2;
template <typename RobustPolicy, typename OutputIterator, typename Strategy>
static inline OutputIterator apply(Geometry1 const& g1,
Geometry2 const& g2,
RobustPolicy const& robust_policy,
OutputIterator out,
Strategy const& strategy)
{
return union_insert_tupled_different
<
Geometry1, Geometry2, SingleTupledOut, single_tag1, single_tag2
>::apply(g1, g2, robust_policy, out, strategy);
}
};
} // namespace dispatch
#endif // DOXYGEN_NO_DISPATCH
#ifndef DOXYGEN_NO_DETAIL
namespace detail { namespace union_
{
/*!
\brief_calc2{union}
\ingroup union
\details \details_calc2{union_insert, spatial set theoretic union}.
\details_insert{union}
\tparam GeometryOut output geometry type, must be specified
\tparam Geometry1 \tparam_geometry
\tparam Geometry2 \tparam_geometry
\tparam OutputIterator output iterator
\param geometry1 \param_geometry
\param geometry2 \param_geometry
\param out \param_out{union}
\return \return_out
*/
template
<
typename GeometryOut,
typename Geometry1,
typename Geometry2,
typename OutputIterator
>
inline OutputIterator union_insert(Geometry1 const& geometry1,
Geometry2 const& geometry2,
OutputIterator out)
{
concepts::check<Geometry1 const>();
concepts::check<Geometry2 const>();
geometry::detail::output_geometry_concept_check<GeometryOut>::apply();
typename strategies::relate::services::default_strategy
<
Geometry1, Geometry2
>::type strategy;
typedef typename geometry::rescale_overlay_policy_type
<
Geometry1,
Geometry2
>::type rescale_policy_type;
rescale_policy_type robust_policy
= geometry::get_rescale_policy<rescale_policy_type>(
geometry1, geometry2, strategy);
return dispatch::union_insert
<
Geometry1, Geometry2, GeometryOut
>::apply(geometry1, geometry2, robust_policy, out, strategy);
}
}} // namespace detail::union_
#endif // DOXYGEN_NO_DETAIL
namespace resolve_strategy {
template
<
typename Strategy,
bool IsUmbrella = strategies::detail::is_umbrella_strategy<Strategy>::value
>
struct union_
{
template <typename Geometry1, typename Geometry2, typename Collection>
static inline void apply(Geometry1 const& geometry1,
Geometry2 const& geometry2,
Collection & output_collection,
Strategy const& strategy)
{
typedef typename geometry::detail::output_geometry_value
<
Collection
>::type single_out;
typedef typename geometry::rescale_overlay_policy_type
<
Geometry1,
Geometry2,
typename Strategy::cs_tag
>::type rescale_policy_type;
rescale_policy_type robust_policy
= geometry::get_rescale_policy<rescale_policy_type>(
geometry1, geometry2, strategy);
dispatch::union_insert
<
Geometry1, Geometry2, single_out
>::apply(geometry1, geometry2, robust_policy,
geometry::detail::output_geometry_back_inserter(output_collection),
strategy);
}
};
template <typename Strategy>
struct union_<Strategy, false>
{
template <typename Geometry1, typename Geometry2, typename Collection>
static inline void apply(Geometry1 const& geometry1,
Geometry2 const& geometry2,
Collection & output_collection,
Strategy const& strategy)
{
using strategies::relate::services::strategy_converter;
union_
<
decltype(strategy_converter<Strategy>::get(strategy))
>::apply(geometry1, geometry2, output_collection,
strategy_converter<Strategy>::get(strategy));
}
};
template <>
struct union_<default_strategy, false>
{
template <typename Geometry1, typename Geometry2, typename Collection>
static inline void apply(Geometry1 const& geometry1,
Geometry2 const& geometry2,
Collection & output_collection,
default_strategy)
{
typedef typename strategies::relate::services::default_strategy
<
Geometry1,
Geometry2
>::type strategy_type;
union_
<
strategy_type
>::apply(geometry1, geometry2, output_collection, strategy_type());
}
};
} // resolve_strategy
namespace resolve_variant
{
template <typename Geometry1, typename Geometry2>
struct union_
{
template <typename Collection, typename Strategy>
static inline void apply(Geometry1 const& geometry1,
Geometry2 const& geometry2,
Collection& output_collection,
Strategy const& strategy)
{
concepts::check<Geometry1 const>();
concepts::check<Geometry2 const>();
//concepts::check<typename boost::range_value<Collection>::type>();
geometry::detail::output_geometry_concept_check
<
typename geometry::detail::output_geometry_value
<
Collection
>::type
>::apply();
resolve_strategy::union_
<
Strategy
>::apply(geometry1, geometry2, output_collection, strategy);
}
};
template <BOOST_VARIANT_ENUM_PARAMS(typename T), typename Geometry2>
struct union_<variant<BOOST_VARIANT_ENUM_PARAMS(T)>, Geometry2>
{
template <typename Collection, typename Strategy>
struct visitor: static_visitor<>
{
Geometry2 const& m_geometry2;
Collection& m_output_collection;
Strategy const& m_strategy;
visitor(Geometry2 const& geometry2,
Collection& output_collection,
Strategy const& strategy)
: m_geometry2(geometry2)
, m_output_collection(output_collection)
, m_strategy(strategy)
{}
template <typename Geometry1>
void operator()(Geometry1 const& geometry1) const
{
union_
<
Geometry1,
Geometry2
>::apply(geometry1, m_geometry2, m_output_collection, m_strategy);
}
};
template <typename Collection, typename Strategy>
static inline void
apply(variant<BOOST_VARIANT_ENUM_PARAMS(T)> const& geometry1,
Geometry2 const& geometry2,
Collection& output_collection,
Strategy const& strategy)
{
boost::apply_visitor(visitor<Collection, Strategy>(geometry2,
output_collection,
strategy),
geometry1);
}
};
template <typename Geometry1, BOOST_VARIANT_ENUM_PARAMS(typename T)>
struct union_<Geometry1, variant<BOOST_VARIANT_ENUM_PARAMS(T)> >
{
template <typename Collection, typename Strategy>
struct visitor: static_visitor<>
{
Geometry1 const& m_geometry1;
Collection& m_output_collection;
Strategy const& m_strategy;
visitor(Geometry1 const& geometry1,
Collection& output_collection,
Strategy const& strategy)
: m_geometry1(geometry1)
, m_output_collection(output_collection)
, m_strategy(strategy)
{}
template <typename Geometry2>
void operator()(Geometry2 const& geometry2) const
{
union_
<
Geometry1,
Geometry2
>::apply(m_geometry1, geometry2, m_output_collection, m_strategy);
}
};
template <typename Collection, typename Strategy>
static inline void
apply(Geometry1 const& geometry1,
variant<BOOST_VARIANT_ENUM_PARAMS(T)> const& geometry2,
Collection& output_collection,
Strategy const& strategy)
{
boost::apply_visitor(visitor<Collection, Strategy>(geometry1,
output_collection,
strategy),
geometry2);
}
};
template <BOOST_VARIANT_ENUM_PARAMS(typename T1), BOOST_VARIANT_ENUM_PARAMS(typename T2)>
struct union_<variant<BOOST_VARIANT_ENUM_PARAMS(T1)>, variant<BOOST_VARIANT_ENUM_PARAMS(T2)> >
{
template <typename Collection, typename Strategy>
struct visitor: static_visitor<>
{
Collection& m_output_collection;
Strategy const& m_strategy;
visitor(Collection& output_collection, Strategy const& strategy)
: m_output_collection(output_collection)
, m_strategy(strategy)
{}
template <typename Geometry1, typename Geometry2>
void operator()(Geometry1 const& geometry1,
Geometry2 const& geometry2) const
{
union_
<
Geometry1,
Geometry2
>::apply(geometry1, geometry2, m_output_collection, m_strategy);
}
};
template <typename Collection, typename Strategy>
static inline void
apply(variant<BOOST_VARIANT_ENUM_PARAMS(T1)> const& geometry1,
variant<BOOST_VARIANT_ENUM_PARAMS(T2)> const& geometry2,
Collection& output_collection,
Strategy const& strategy)
{
boost::apply_visitor(visitor<Collection, Strategy>(output_collection,
strategy),
geometry1, geometry2);
}
};
} // namespace resolve_variant
/*!
\brief Combines two geometries which each other
\ingroup union
\details \details_calc2{union, spatial set theoretic union}.
\tparam Geometry1 \tparam_geometry
\tparam Geometry2 \tparam_geometry
\tparam Collection output collection, either a multi-geometry,
or a std::vector<Geometry> / std::deque<Geometry> etc
\tparam Strategy \tparam_strategy{Union_}
\param geometry1 \param_geometry
\param geometry2 \param_geometry
\param output_collection the output collection
\param strategy \param_strategy{union_}
\note Called union_ because union is a reserved word.
\qbk{distinguish,with strategy}
\qbk{[include reference/algorithms/union.qbk]}
*/
template
<
typename Geometry1,
typename Geometry2,
typename Collection,
typename Strategy
>
inline void union_(Geometry1 const& geometry1,
Geometry2 const& geometry2,
Collection& output_collection,
Strategy const& strategy)
{
resolve_variant::union_
<
Geometry1,
Geometry2
>::apply(geometry1, geometry2, output_collection, strategy);
}
/*!
\brief Combines two geometries which each other
\ingroup union
\details \details_calc2{union, spatial set theoretic union}.
\tparam Geometry1 \tparam_geometry
\tparam Geometry2 \tparam_geometry
\tparam Collection output collection, either a multi-geometry,
or a std::vector<Geometry> / std::deque<Geometry> etc
\param geometry1 \param_geometry
\param geometry2 \param_geometry
\param output_collection the output collection
\note Called union_ because union is a reserved word.
\qbk{[include reference/algorithms/union.qbk]}
*/
template
<
typename Geometry1,
typename Geometry2,
typename Collection
>
inline void union_(Geometry1 const& geometry1,
Geometry2 const& geometry2,
Collection& output_collection)
{
resolve_variant::union_
<
Geometry1,
Geometry2
>::apply(geometry1, geometry2, output_collection, default_strategy());
}
}} // namespace boost::geometry
#endif // BOOST_GEOMETRY_ALGORITHMS_UNION_HPP