unioil-loyalty-rn-app/ios/Pods/Flipper-Boost-iOSX/boost/histogram/detail/axes.hpp

440 lines
13 KiB
C++

// Copyright 2015-2018 Hans Dembinski
//
// Distributed under the Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt
// or copy at http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_HISTOGRAM_DETAIL_AXES_HPP
#define BOOST_HISTOGRAM_DETAIL_AXES_HPP
#include <array>
#include <boost/core/nvp.hpp>
#include <boost/histogram/axis/traits.hpp>
#include <boost/histogram/axis/variant.hpp>
#include <boost/histogram/detail/make_default.hpp>
#include <boost/histogram/detail/nonmember_container_access.hpp>
#include <boost/histogram/detail/optional_index.hpp>
#include <boost/histogram/detail/priority.hpp>
#include <boost/histogram/detail/relaxed_tuple_size.hpp>
#include <boost/histogram/detail/static_if.hpp>
#include <boost/histogram/detail/sub_array.hpp>
#include <boost/histogram/detail/try_cast.hpp>
#include <boost/histogram/fwd.hpp>
#include <boost/mp11/algorithm.hpp>
#include <boost/mp11/integer_sequence.hpp>
#include <boost/mp11/list.hpp>
#include <boost/mp11/tuple.hpp>
#include <boost/mp11/utility.hpp>
#include <boost/throw_exception.hpp>
#include <cassert>
#include <initializer_list>
#include <iterator>
#include <stdexcept>
#include <string>
#include <tuple>
#include <type_traits>
#include <vector>
namespace boost {
namespace histogram {
namespace detail {
template <class T, class Unary>
void for_each_axis_impl(dynamic_size, T& t, Unary& p) {
for (auto& a : t) axis::visit(p, a);
}
template <class N, class T, class Unary>
void for_each_axis_impl(N, T& t, Unary& p) {
mp11::tuple_for_each(t, p);
}
// also matches const T and const Unary
template <class T, class Unary>
void for_each_axis(T&& t, Unary&& p) {
for_each_axis_impl(relaxed_tuple_size(t), t, p);
}
// merge if a and b are discrete and growing
struct axis_merger {
template <class T, class U>
T operator()(const T& a, const U& u) {
const T* bp = ptr_cast<T>(&u);
if (!bp) BOOST_THROW_EXCEPTION(std::invalid_argument("axes not mergable"));
using O = axis::traits::get_options<T>;
constexpr bool discrete_and_growing =
axis::traits::is_continuous<T>::value == false && O::test(axis::option::growth);
return impl(mp11::mp_bool<discrete_and_growing>{}, a, *bp);
}
template <class T>
T impl(std::false_type, const T& a, const T& b) {
if (!relaxed_equal{}(a, b))
BOOST_THROW_EXCEPTION(std::invalid_argument("axes not mergable"));
return a;
}
template <class T>
T impl(std::true_type, const T& a, const T& b) {
if (relaxed_equal{}(axis::traits::metadata(a), axis::traits::metadata(b))) {
auto r = a;
if (axis::traits::is_ordered<T>::value) {
r.update(b.value(0));
r.update(b.value(b.size() - 1));
} else
for (auto&& v : b) r.update(v);
return r;
}
return impl(std::false_type{}, a, b);
}
};
// create empty dynamic axis which can store any axes types from the argument
template <class T>
auto make_empty_dynamic_axes(const T& axes) {
return make_default(axes);
}
template <class... Ts>
auto make_empty_dynamic_axes(const std::tuple<Ts...>&) {
using namespace ::boost::mp11;
using L = mp_unique<axis::variant<Ts...>>;
// return std::vector<axis::variant<Axis0, Axis1, ...>> or std::vector<Axis0>
return std::vector<mp_if_c<(mp_size<L>::value == 1), mp_first<L>, L>>{};
}
template <class T, class Functor, std::size_t... Is>
auto axes_transform_impl(const T& t, Functor&& f, mp11::index_sequence<Is...>) {
return std::make_tuple(f(Is, std::get<Is>(t))...);
}
// warning: sequential order of functor execution is platform-dependent!
template <class... Ts, class Functor>
auto axes_transform(const std::tuple<Ts...>& old_axes, Functor&& f) {
return axes_transform_impl(old_axes, std::forward<Functor>(f),
mp11::make_index_sequence<sizeof...(Ts)>{});
}
// changing axes type is not supported
template <class T, class Functor>
T axes_transform(const T& old_axes, Functor&& f) {
T axes = make_default(old_axes);
axes.reserve(old_axes.size());
for_each_axis(old_axes, [&](const auto& a) { axes.emplace_back(f(axes.size(), a)); });
return axes;
}
template <class... Ts, class Binary, std::size_t... Is>
std::tuple<Ts...> axes_transform_impl(const std::tuple<Ts...>& lhs,
const std::tuple<Ts...>& rhs, Binary&& bin,
mp11::index_sequence<Is...>) {
return std::make_tuple(bin(std::get<Is>(lhs), std::get<Is>(rhs))...);
}
template <class... Ts, class Binary>
std::tuple<Ts...> axes_transform(const std::tuple<Ts...>& lhs,
const std::tuple<Ts...>& rhs, Binary&& bin) {
return axes_transform_impl(lhs, rhs, bin, mp11::make_index_sequence<sizeof...(Ts)>{});
}
template <class T, class Binary>
T axes_transform(const T& lhs, const T& rhs, Binary&& bin) {
T ax = make_default(lhs);
ax.reserve(lhs.size());
using std::begin;
auto ir = begin(rhs);
for (auto&& li : lhs) {
axis::visit(
[&](const auto& li) {
axis::visit([&](const auto& ri) { ax.emplace_back(bin(li, ri)); }, *ir);
},
li);
++ir;
}
return ax;
}
template <class T>
unsigned axes_rank(const T& axes) {
using std::begin;
using std::end;
return static_cast<unsigned>(std::distance(begin(axes), end(axes)));
}
template <class... Ts>
constexpr unsigned axes_rank(const std::tuple<Ts...>&) {
return static_cast<unsigned>(sizeof...(Ts));
}
template <class T>
void throw_if_axes_is_too_large(const T& axes) {
if (axes_rank(axes) > BOOST_HISTOGRAM_DETAIL_AXES_LIMIT)
BOOST_THROW_EXCEPTION(
std::invalid_argument("length of axis vector exceeds internal buffers, "
"recompile with "
"-DBOOST_HISTOGRAM_DETAIL_AXES_LIMIT=<new max size> "
"to increase internal buffers"));
}
// tuple is never too large because internal buffers adapt to size of tuple
template <class... Ts>
void throw_if_axes_is_too_large(const std::tuple<Ts...>&) {}
template <unsigned N, class... Ts>
decltype(auto) axis_get(std::tuple<Ts...>& axes) {
return std::get<N>(axes);
}
template <unsigned N, class... Ts>
decltype(auto) axis_get(const std::tuple<Ts...>& axes) {
return std::get<N>(axes);
}
template <unsigned N, class T>
decltype(auto) axis_get(T& axes) {
return axes[N];
}
template <unsigned N, class T>
decltype(auto) axis_get(const T& axes) {
return axes[N];
}
template <class... Ts>
auto axis_get(std::tuple<Ts...>& axes, const unsigned i) {
constexpr auto S = sizeof...(Ts);
using V = mp11::mp_unique<axis::variant<Ts*...>>;
return mp11::mp_with_index<S>(i, [&axes](auto i) { return V(&std::get<i>(axes)); });
}
template <class... Ts>
auto axis_get(const std::tuple<Ts...>& axes, const unsigned i) {
constexpr auto S = sizeof...(Ts);
using V = mp11::mp_unique<axis::variant<const Ts*...>>;
return mp11::mp_with_index<S>(i, [&axes](auto i) { return V(&std::get<i>(axes)); });
}
template <class T>
decltype(auto) axis_get(T& axes, const unsigned i) {
return axes[i];
}
template <class T>
decltype(auto) axis_get(const T& axes, const unsigned i) {
return axes[i];
}
template <class T, class U, std::size_t... Is>
bool axes_equal_impl(const T& t, const U& u, mp11::index_sequence<Is...>) noexcept {
bool result = true;
// operator folding emulation
(void)std::initializer_list<bool>{
(result &= relaxed_equal{}(std::get<Is>(t), std::get<Is>(u)))...};
return result;
}
template <class... Ts, class... Us>
bool axes_equal_impl(const std::tuple<Ts...>& t, const std::tuple<Us...>& u) noexcept {
return axes_equal_impl(
t, u, mp11::make_index_sequence<std::min(sizeof...(Ts), sizeof...(Us))>{});
}
template <class... Ts, class U>
bool axes_equal_impl(const std::tuple<Ts...>& t, const U& u) noexcept {
using std::begin;
auto iu = begin(u);
bool result = true;
mp11::tuple_for_each(t, [&](const auto& ti) {
axis::visit([&](const auto& ui) { result &= relaxed_equal{}(ti, ui); }, *iu);
++iu;
});
return result;
}
template <class T, class... Us>
bool axes_equal_impl(const T& t, const std::tuple<Us...>& u) noexcept {
return axes_equal_impl(u, t);
}
template <class T, class U>
bool axes_equal_impl(const T& t, const U& u) noexcept {
using std::begin;
auto iu = begin(u);
bool result = true;
for (auto&& ti : t) {
axis::visit(
[&](const auto& ti) {
axis::visit([&](const auto& ui) { result &= relaxed_equal{}(ti, ui); }, *iu);
},
ti);
++iu;
}
return result;
}
template <class T, class U>
bool axes_equal(const T& t, const U& u) noexcept {
return axes_rank(t) == axes_rank(u) && axes_equal_impl(t, u);
}
// enable_if_t needed by msvc :(
template <class... Ts, class... Us>
std::enable_if_t<!(std::is_same<std::tuple<Ts...>, std::tuple<Us...>>::value)>
axes_assign(std::tuple<Ts...>&, const std::tuple<Us...>&) {
BOOST_THROW_EXCEPTION(std::invalid_argument("cannot assign axes, types do not match"));
}
template <class... Ts>
void axes_assign(std::tuple<Ts...>& t, const std::tuple<Ts...>& u) {
t = u;
}
template <class... Ts, class U>
void axes_assign(std::tuple<Ts...>& t, const U& u) {
if (sizeof...(Ts) == detail::size(u)) {
using std::begin;
auto iu = begin(u);
mp11::tuple_for_each(t, [&](auto& ti) {
using T = std::decay_t<decltype(ti)>;
ti = axis::get<T>(*iu);
++iu;
});
return;
}
BOOST_THROW_EXCEPTION(std::invalid_argument("cannot assign axes, sizes do not match"));
}
template <class T, class... Us>
void axes_assign(T& t, const std::tuple<Us...>& u) {
// resize instead of reserve, because t may not be empty and we want exact capacity
t.resize(sizeof...(Us));
using std::begin;
auto it = begin(t);
mp11::tuple_for_each(u, [&](const auto& ui) { *it++ = ui; });
}
template <class T, class U>
void axes_assign(T& t, const U& u) {
t.assign(u.begin(), u.end());
}
template <class Archive, class T>
void axes_serialize(Archive& ar, T& axes) {
ar& make_nvp("axes", axes);
}
template <class Archive, class... Ts>
void axes_serialize(Archive& ar, std::tuple<Ts...>& axes) {
// needed to keep serialization format backward compatible
struct proxy {
std::tuple<Ts...>& t;
void serialize(Archive& ar, unsigned /* version */) {
mp11::tuple_for_each(t, [&ar](auto& x) { ar& make_nvp("item", x); });
}
};
proxy p{axes};
ar& make_nvp("axes", p);
}
// total number of bins including *flow bins
template <class T>
std::size_t bincount(const T& axes) {
std::size_t n = 1;
for_each_axis(axes, [&n](const auto& a) {
const auto old = n;
const auto s = axis::traits::extent(a);
n *= s;
if (s > 0 && n < old) BOOST_THROW_EXCEPTION(std::overflow_error("bincount overflow"));
});
return n;
}
// initial offset for the linear index
template <class T>
std::size_t offset(const T& axes) {
std::size_t n = 0;
auto stride = static_cast<std::size_t>(1);
for_each_axis(axes, [&](const auto& a) {
if (axis::traits::options(a) & axis::option::growth)
n = invalid_index;
else if (n != invalid_index && axis::traits::options(a) & axis::option::underflow)
n += stride;
stride *= axis::traits::extent(a);
});
return n;
}
// make default-constructed buffer (no initialization for POD types)
template <class T, class A>
auto make_stack_buffer(const A& a) {
return sub_array<T, buffer_size<A>::value>(axes_rank(a));
}
// make buffer with elements initialized to v
template <class T, class A>
auto make_stack_buffer(const A& a, const T& t) {
return sub_array<T, buffer_size<A>::value>(axes_rank(a), t);
}
template <class T>
using has_underflow =
decltype(axis::traits::get_options<T>::test(axis::option::underflow));
template <class T>
using is_growing = decltype(axis::traits::get_options<T>::test(axis::option::growth));
template <class T>
using is_not_inclusive = mp11::mp_not<axis::traits::is_inclusive<T>>;
// for vector<T>
template <class T>
struct axis_types_impl {
using type = mp11::mp_list<std::decay_t<T>>;
};
// for vector<variant<Ts...>>
template <class... Ts>
struct axis_types_impl<axis::variant<Ts...>> {
using type = mp11::mp_list<std::decay_t<Ts>...>;
};
// for tuple<Ts...>
template <class... Ts>
struct axis_types_impl<std::tuple<Ts...>> {
using type = mp11::mp_list<std::decay_t<Ts>...>;
};
template <class T>
using axis_types =
typename axis_types_impl<mp11::mp_if<is_vector_like<T>, mp11::mp_first<T>, T>>::type;
template <template <class> class Trait, class Axes>
using has_special_axis = mp11::mp_any_of<axis_types<Axes>, Trait>;
template <class Axes>
using has_growing_axis = mp11::mp_any_of<axis_types<Axes>, is_growing>;
template <class Axes>
using has_non_inclusive_axis = mp11::mp_any_of<axis_types<Axes>, is_not_inclusive>;
template <class T>
constexpr std::size_t type_score() {
return sizeof(T) *
(std::is_integral<T>::value ? 1 : std::is_floating_point<T>::value ? 10 : 100);
}
// arbitrary ordering of types
template <class T, class U>
using type_less = mp11::mp_bool<(type_score<T>() < type_score<U>())>;
template <class Axes>
using value_types = mp11::mp_sort<
mp11::mp_unique<mp11::mp_transform<axis::traits::value_type, axis_types<Axes>>>,
type_less>;
} // namespace detail
} // namespace histogram
} // namespace boost
#endif